| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsrss | Structured version Visualization version Unicode version | ||
| Description: Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.) |
| Ref | Expression |
|---|---|
| tsrss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psss 17214 |
. . 3
| |
| 2 | inss1 3833 |
. . . . . 6
| |
| 3 | dmss 5323 |
. . . . . 6
| |
| 4 | ssralv 3666 |
. . . . . 6
| |
| 5 | 2, 3, 4 | mp2b 10 |
. . . . 5
|
| 6 | ssralv 3666 |
. . . . . . 7
| |
| 7 | 2, 3, 6 | mp2b 10 |
. . . . . 6
|
| 8 | 7 | ralimi 2952 |
. . . . 5
|
| 9 | 5, 8 | syl 17 |
. . . 4
|
| 10 | inss2 3834 |
. . . . . . . . . 10
| |
| 11 | dmss 5323 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
|
| 13 | dmxpid 5345 |
. . . . . . . . 9
| |
| 14 | 12, 13 | sseqtri 3637 |
. . . . . . . 8
|
| 15 | 14 | sseli 3599 |
. . . . . . 7
|
| 16 | 14 | sseli 3599 |
. . . . . . 7
|
| 17 | brinxp 5181 |
. . . . . . . 8
| |
| 18 | brinxp 5181 |
. . . . . . . . 9
| |
| 19 | 18 | ancoms 469 |
. . . . . . . 8
|
| 20 | 17, 19 | orbi12d 746 |
. . . . . . 7
|
| 21 | 15, 16, 20 | syl2an 494 |
. . . . . 6
|
| 22 | 21 | ralbidva 2985 |
. . . . 5
|
| 23 | 22 | ralbiia 2979 |
. . . 4
|
| 24 | 9, 23 | sylib 208 |
. . 3
|
| 25 | 1, 24 | anim12i 590 |
. 2
|
| 26 | eqid 2622 |
. . 3
| |
| 27 | 26 | istsr2 17218 |
. 2
|
| 28 | eqid 2622 |
. . 3
| |
| 29 | 28 | istsr2 17218 |
. 2
|
| 30 | 25, 27, 29 | 3imtr4i 281 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ps 17200 df-tsr 17201 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |