MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrss Structured version   Visualization version   Unicode version

Theorem tsrss 17223
Description: Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.)
Assertion
Ref Expression
tsrss  |-  ( R  e.  TosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  TosetRel  )

Proof of Theorem tsrss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psss 17214 . . 3  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  PosetRel )
2 inss1 3833 . . . . . 6  |-  ( R  i^i  ( A  X.  A ) )  C_  R
3 dmss 5323 . . . . . 6  |-  ( ( R  i^i  ( A  X.  A ) ) 
C_  R  ->  dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  R )
4 ssralv 3666 . . . . . 6  |-  ( dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  R  ->  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A
) ) A. y  e.  dom  R ( x R y  \/  y R x ) ) )
52, 3, 4mp2b 10 . . . . 5  |-  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  R ( x R y  \/  y R x ) )
6 ssralv 3666 . . . . . . 7  |-  ( dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  R  ->  ( A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. y  e.  dom  ( R  i^i  ( A  X.  A
) ) ( x R y  \/  y R x ) ) )
72, 3, 6mp2b 10 . . . . . 6  |-  ( A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x ) )
87ralimi 2952 . . . . 5  |-  ( A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x ) )
95, 8syl 17 . . . 4  |-  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x ) )
10 inss2 3834 . . . . . . . . . 10  |-  ( R  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
11 dmss 5323 . . . . . . . . . 10  |-  ( ( R  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  ( A  X.  A ) )
1210, 11ax-mp 5 . . . . . . . . 9  |-  dom  ( R  i^i  ( A  X.  A ) )  C_  dom  ( A  X.  A
)
13 dmxpid 5345 . . . . . . . . 9  |-  dom  ( A  X.  A )  =  A
1412, 13sseqtri 3637 . . . . . . . 8  |-  dom  ( R  i^i  ( A  X.  A ) )  C_  A
1514sseli 3599 . . . . . . 7  |-  ( x  e.  dom  ( R  i^i  ( A  X.  A ) )  ->  x  e.  A )
1614sseli 3599 . . . . . . 7  |-  ( y  e.  dom  ( R  i^i  ( A  X.  A ) )  -> 
y  e.  A )
17 brinxp 5181 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
18 brinxp 5181 . . . . . . . . 9  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
1918ancoms 469 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
2017, 19orbi12d 746 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( x R y  \/  y R x )  <->  ( x
( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
2115, 16, 20syl2an 494 . . . . . 6  |-  ( ( x  e.  dom  ( R  i^i  ( A  X.  A ) )  /\  y  e.  dom  ( R  i^i  ( A  X.  A ) ) )  ->  ( ( x R y  \/  y R x )  <->  ( x
( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
2221ralbidva 2985 . . . . 5  |-  ( x  e.  dom  ( R  i^i  ( A  X.  A ) )  -> 
( A. y  e. 
dom  ( R  i^i  ( A  X.  A
) ) ( x R y  \/  y R x )  <->  A. y  e.  dom  ( R  i^i  ( A  X.  A
) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
2322ralbiia 2979 . . . 4  |-  ( A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x )  <->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) )
249, 23sylib 208 . . 3  |-  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) )
251, 24anim12i 590 . 2  |-  ( ( R  e.  PosetRel  /\  A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x ) )  ->  ( ( R  i^i  ( A  X.  A ) )  e.  PosetRel 
/\  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
26 eqid 2622 . . 3  |-  dom  R  =  dom  R
2726istsr2 17218 . 2  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x ) ) )
28 eqid 2622 . . 3  |-  dom  ( R  i^i  ( A  X.  A ) )  =  dom  ( R  i^i  ( A  X.  A
) )
2928istsr2 17218 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  e.  TosetRel 
<->  ( ( R  i^i  ( A  X.  A
) )  e.  PosetRel  /\  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A
) ) y  \/  y ( R  i^i  ( A  X.  A
) ) x ) ) )
3025, 27, 293imtr4i 281 1  |-  ( R  e.  TosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  TosetRel  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   dom cdm 5114   PosetRelcps 17198    TosetRel ctsr 17199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ps 17200  df-tsr 17201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator