MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuspgrop Structured version   Visualization version   Unicode version

Theorem isuspgrop 26056
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.)
Assertion
Ref Expression
isuspgrop  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( <. V ,  E >.  e. USPGraph 
<->  E : dom  E -1-1-> { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p )  <_  2 } ) )
Distinct variable groups:    E, p    V, p    W, p    X, p

Proof of Theorem isuspgrop
StepHypRef Expression
1 opex 4932 . . 3  |-  <. V ,  E >.  e.  _V
2 eqid 2622 . . . 4  |-  (Vtx `  <. V ,  E >. )  =  (Vtx `  <. V ,  E >. )
3 eqid 2622 . . . 4  |-  (iEdg `  <. V ,  E >. )  =  (iEdg `  <. V ,  E >. )
42, 3isuspgr 26047 . . 3  |-  ( <. V ,  E >.  e. 
_V  ->  ( <. V ,  E >.  e. USPGraph  <->  (iEdg `  <. V ,  E >. ) : dom  (iEdg `  <. V ,  E >. ) -1-1-> { p  e.  ( ~P (Vtx `  <. V ,  E >. )  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
51, 4mp1i 13 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( <. V ,  E >.  e. USPGraph 
<->  (iEdg `  <. V ,  E >. ) : dom  (iEdg `  <. V ,  E >. ) -1-1-> { p  e.  ( ~P (Vtx `  <. V ,  E >. )  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
6 opiedgfv 25887 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  <. V ,  E >. )  =  E )
76dmeqd 5326 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  dom  (iEdg `  <. V ,  E >. )  =  dom  E )
8 opvtxfv 25884 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Vtx `  <. V ,  E >. )  =  V )
98pweqd 4163 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ~P (Vtx `  <. V ,  E >. )  =  ~P V )
109difeq1d 3727 . . . 4  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( ~P (Vtx `  <. V ,  E >. ) 
\  { (/) } )  =  ( ~P V  \  { (/) } ) )
1110rabeqdv 3194 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { p  e.  ( ~P (Vtx `  <. V ,  E >. )  \  { (/) } )  |  ( # `  p
)  <_  2 }  =  { p  e.  ( ~P V  \  { (/)
} )  |  (
# `  p )  <_  2 } )
126, 7, 11f1eq123d 6131 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( (iEdg `  <. V ,  E >. ) : dom  (iEdg `  <. V ,  E >. ) -1-1-> { p  e.  ( ~P (Vtx `  <. V ,  E >. )  \  { (/)
} )  |  (
# `  p )  <_  2 }  <->  E : dom  E -1-1-> { p  e.  ( ~P V  \  { (/)
} )  |  (
# `  p )  <_  2 } ) )
135, 12bitrd 268 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( <. V ,  E >.  e. USPGraph 
<->  E : dom  E -1-1-> { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p )  <_  2 } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114   -1-1->wf1 5885   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-uspgr 26045
This theorem is referenced by:  uspgrsprfo  41756
  Copyright terms: Public domain W3C validator