MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmetd Structured version   Visualization version   Unicode version

Theorem isxmetd 22131
Description: Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0  |-  ( ph  ->  X  e.  _V )
isxmetd.1  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
isxmetd.2  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
isxmetd.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
Assertion
Ref Expression
isxmetd  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Distinct variable groups:    x, y,
z, D    ph, x, y, z    x, X, y, z

Proof of Theorem isxmetd
StepHypRef Expression
1 isxmetd.1 . 2  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
2 isxmetd.2 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
3 isxmetd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
433exp2 1285 . . . . . 6  |-  ( ph  ->  ( x  e.  X  ->  ( y  e.  X  ->  ( z  e.  X  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) ) )
54imp32 449 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( z  e.  X  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
65ralrimiv 2965 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
72, 6jca 554 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) )
87ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) )
9 isxmetd.0 . . 3  |-  ( ph  ->  X  e.  _V )
10 isxmet 22129 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
119, 10syl 17 . 2  |-  ( ph  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
121, 8, 11mpbir2and 957 1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR*cxr 10073    <_ cle 10075   +ecxad 11944   *Metcxmt 19731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739
This theorem is referenced by:  isxmet2d  22132  xmetres2  22166  comet  22318
  Copyright terms: Public domain W3C validator