| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isxmet | Structured version Visualization version Unicode version | ||
| Description: Express the predicate
" |
| Ref | Expression |
|---|---|
| isxmet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. . . . 5
| |
| 2 | xpeq12 5134 |
. . . . . . . . 9
| |
| 3 | 2 | anidms 677 |
. . . . . . . 8
|
| 4 | 3 | oveq2d 6666 |
. . . . . . 7
|
| 5 | raleq 3138 |
. . . . . . . . . 10
| |
| 6 | 5 | anbi2d 740 |
. . . . . . . . 9
|
| 7 | 6 | raleqbi1dv 3146 |
. . . . . . . 8
|
| 8 | 7 | raleqbi1dv 3146 |
. . . . . . 7
|
| 9 | 4, 8 | rabeqbidv 3195 |
. . . . . 6
|
| 10 | df-xmet 19739 |
. . . . . 6
| |
| 11 | ovex 6678 |
. . . . . . 7
| |
| 12 | 11 | rabex 4813 |
. . . . . 6
|
| 13 | 9, 10, 12 | fvmpt 6282 |
. . . . 5
|
| 14 | 1, 13 | syl 17 |
. . . 4
|
| 15 | 14 | eleq2d 2687 |
. . 3
|
| 16 | oveq 6656 |
. . . . . . . 8
| |
| 17 | 16 | eqeq1d 2624 |
. . . . . . 7
|
| 18 | 17 | bibi1d 333 |
. . . . . 6
|
| 19 | oveq 6656 |
. . . . . . . . 9
| |
| 20 | oveq 6656 |
. . . . . . . . 9
| |
| 21 | 19, 20 | oveq12d 6668 |
. . . . . . . 8
|
| 22 | 16, 21 | breq12d 4666 |
. . . . . . 7
|
| 23 | 22 | ralbidv 2986 |
. . . . . 6
|
| 24 | 18, 23 | anbi12d 747 |
. . . . 5
|
| 25 | 24 | 2ralbidv 2989 |
. . . 4
|
| 26 | 25 | elrab 3363 |
. . 3
|
| 27 | 15, 26 | syl6bb 276 |
. 2
|
| 28 | xrex 11829 |
. . . 4
| |
| 29 | sqxpexg 6963 |
. . . 4
| |
| 30 | elmapg 7870 |
. . . 4
| |
| 31 | 28, 29, 30 | sylancr 695 |
. . 3
|
| 32 | 31 | anbi1d 741 |
. 2
|
| 33 | 27, 32 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-xr 10078 df-xmet 19739 |
| This theorem is referenced by: isxmetd 22131 xmetf 22134 ismet2 22138 xmeteq0 22143 xmettri2 22145 imasf1oxmet 22180 pstmxmet 29940 |
| Copyright terms: Public domain | W3C validator |