MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmet Structured version   Visualization version   Unicode version

Theorem isxmet 22129
Description: Express the predicate " D is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
isxmet  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
Distinct variable groups:    x, y,
z, D    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem isxmet
Dummy variables  d 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . . . 5  |-  ( X  e.  A  ->  X  e.  _V )
2 xpeq12 5134 . . . . . . . . 9  |-  ( ( t  =  X  /\  t  =  X )  ->  ( t  X.  t
)  =  ( X  X.  X ) )
32anidms 677 . . . . . . . 8  |-  ( t  =  X  ->  (
t  X.  t )  =  ( X  X.  X ) )
43oveq2d 6666 . . . . . . 7  |-  ( t  =  X  ->  ( RR*  ^m  ( t  X.  t ) )  =  ( RR*  ^m  ( X  X.  X ) ) )
5 raleq 3138 . . . . . . . . . 10  |-  ( t  =  X  ->  ( A. z  e.  t 
( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) )
65anbi2d 740 . . . . . . . . 9  |-  ( t  =  X  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
76raleqbi1dv 3146 . . . . . . . 8  |-  ( t  =  X  ->  ( A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
87raleqbi1dv 3146 . . . . . . 7  |-  ( t  =  X  ->  ( A. x  e.  t  A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
94, 8rabeqbidv 3195 . . . . . 6  |-  ( t  =  X  ->  { d  e.  ( RR*  ^m  (
t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
10 df-xmet 19739 . . . . . 6  |-  *Met  =  ( t  e. 
_V  |->  { d  e.  ( RR*  ^m  (
t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
11 ovex 6678 . . . . . . 7  |-  ( RR*  ^m  ( X  X.  X
) )  e.  _V
1211rabex 4813 . . . . . 6  |-  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  e.  _V
139, 10, 12fvmpt 6282 . . . . 5  |-  ( X  e.  _V  ->  ( *Met `  X )  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
141, 13syl 17 . . . 4  |-  ( X  e.  A  ->  ( *Met `  X )  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
1514eleq2d 2687 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  D  e.  { d  e.  ( RR*  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) ) } ) )
16 oveq 6656 . . . . . . . 8  |-  ( d  =  D  ->  (
x d y )  =  ( x D y ) )
1716eqeq1d 2624 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  =  0  <->  (
x D y )  =  0 ) )
1817bibi1d 333 . . . . . 6  |-  ( d  =  D  ->  (
( ( x d y )  =  0  <-> 
x  =  y )  <-> 
( ( x D y )  =  0  <-> 
x  =  y ) ) )
19 oveq 6656 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d x )  =  ( z D x ) )
20 oveq 6656 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d y )  =  ( z D y ) )
2119, 20oveq12d 6668 . . . . . . . 8  |-  ( d  =  D  ->  (
( z d x ) +e ( z d y ) )  =  ( ( z D x ) +e ( z D y ) ) )
2216, 21breq12d 4666 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <-> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
2322ralbidv 2986 . . . . . 6  |-  ( d  =  D  ->  ( A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
2418, 23anbi12d 747 . . . . 5  |-  ( d  =  D  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
25242ralbidv 2989 . . . 4  |-  ( d  =  D  ->  ( A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
2625elrab 3363 . . 3  |-  ( D  e.  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
2715, 26syl6bb 276 . 2  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
28 xrex 11829 . . . 4  |-  RR*  e.  _V
29 sqxpexg 6963 . . . 4  |-  ( X  e.  A  ->  ( X  X.  X )  e. 
_V )
30 elmapg 7870 . . . 4  |-  ( (
RR*  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3128, 29, 30sylancr 695 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3231anbi1d 741 . 2  |-  ( X  e.  A  ->  (
( D  e.  (
RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
3327, 32bitrd 268 1  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   RR*cxr 10073    <_ cle 10075   +ecxad 11944   *Metcxmt 19731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739
This theorem is referenced by:  isxmetd  22131  xmetf  22134  ismet2  22138  xmeteq0  22143  xmettri2  22145  imasf1oxmet  22180  pstmxmet  29940
  Copyright terms: Public domain W3C validator