MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunopn Structured version   Visualization version   Unicode version

Theorem iunopn 20703
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iunopn  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  e.  J )
Distinct variable groups:    x, A    x, J
Allowed substitution hint:    B( x)

Proof of Theorem iunopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4552 . . 3  |-  ( A. x  e.  A  B  e.  J  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
21adantl 482 . 2  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
3 uniiunlem 3691 . . . 4  |-  ( A. x  e.  A  B  e.  J  ->  ( A. x  e.  A  B  e.  J  <->  { y  |  E. x  e.  A  y  =  B }  C_  J
) )
43ibi 256 . . 3  |-  ( A. x  e.  A  B  e.  J  ->  { y  |  E. x  e.  A  y  =  B }  C_  J )
5 uniopn 20702 . . 3  |-  ( ( J  e.  Top  /\  { y  |  E. x  e.  A  y  =  B }  C_  J )  ->  U. { y  |  E. x  e.  A  y  =  B }  e.  J )
64, 5sylan2 491 . 2  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U. {
y  |  E. x  e.  A  y  =  B }  e.  J
)
72, 6eqeltrd 2701 1  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  e.  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   U_ciun 4520   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-iun 4522  df-top 20699
This theorem is referenced by:  iincld  20843  tgcn  21056  kgentopon  21341  xkococnlem  21462  qtoptop2  21502  zcld  22616  metnrmlem2  22663  cnambfre  33458
  Copyright terms: Public domain W3C validator