Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004val Structured version   Visualization version   Unicode version

Theorem k0004val 38448
Description: The topological simplex of dimension  N is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a  |-  A  =  ( n  e.  NN0  |->  { t  e.  ( ( 0 [,] 1
)  ^m  ( 1 ... ( n  + 
1 ) ) )  |  sum_ k  e.  ( 1 ... ( n  +  1 ) ) ( t `  k
)  =  1 } )
Assertion
Ref Expression
k0004val  |-  ( N  e.  NN0  ->  ( A `
 N )  =  { t  e.  ( ( 0 [,] 1
)  ^m  ( 1 ... ( N  + 
1 ) ) )  |  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( t `  k
)  =  1 } )
Distinct variable groups:    k, n    t, n    k, N    t, N, n
Allowed substitution hints:    A( t, k, n)

Proof of Theorem k0004val
StepHypRef Expression
1 oveq1 6657 . . . . 5  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
21oveq2d 6666 . . . 4  |-  ( n  =  N  ->  (
1 ... ( n  + 
1 ) )  =  ( 1 ... ( N  +  1 ) ) )
32oveq2d 6666 . . 3  |-  ( n  =  N  ->  (
( 0 [,] 1
)  ^m  ( 1 ... ( n  + 
1 ) ) )  =  ( ( 0 [,] 1 )  ^m  ( 1 ... ( N  +  1 ) ) ) )
42sumeq1d 14431 . . . 4  |-  ( n  =  N  ->  sum_ k  e.  ( 1 ... (
n  +  1 ) ) ( t `  k )  =  sum_ k  e.  ( 1 ... ( N  + 
1 ) ) ( t `  k ) )
54eqeq1d 2624 . . 3  |-  ( n  =  N  ->  ( sum_ k  e.  ( 1 ... ( n  + 
1 ) ) ( t `  k )  =  1  <->  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( t `  k )  =  1 ) )
63, 5rabeqbidv 3195 . 2  |-  ( n  =  N  ->  { t  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... (
n  +  1 ) ) )  |  sum_ k  e.  ( 1 ... ( n  + 
1 ) ) ( t `  k )  =  1 }  =  { t  e.  ( ( 0 [,] 1
)  ^m  ( 1 ... ( N  + 
1 ) ) )  |  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( t `  k
)  =  1 } )
7 k0004.a . 2  |-  A  =  ( n  e.  NN0  |->  { t  e.  ( ( 0 [,] 1
)  ^m  ( 1 ... ( n  + 
1 ) ) )  |  sum_ k  e.  ( 1 ... ( n  +  1 ) ) ( t `  k
)  =  1 } )
8 ovex 6678 . . 3  |-  ( ( 0 [,] 1 )  ^m  ( 1 ... ( N  +  1 ) ) )  e. 
_V
98rabex 4813 . 2  |-  { t  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... ( N  +  1 ) ) )  |  sum_ k  e.  ( 1 ... ( N  + 
1 ) ) ( t `  k )  =  1 }  e.  _V
106, 7, 9fvmpt 6282 1  |-  ( N  e.  NN0  ->  ( A `
 N )  =  { t  e.  ( ( 0 [,] 1
)  ^m  ( 1 ... ( N  + 
1 ) ) )  |  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( t `  k
)  =  1 } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   [,]cicc 12178   ...cfz 12326   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-sum 14417
This theorem is referenced by:  k0004ss1  38449  k0004val0  38452
  Copyright terms: Public domain W3C validator