| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > kbass5 | Structured version Visualization version Unicode version | ||
| Description: Dirac bra-ket associative
law |
| Ref | Expression |
|---|---|
| kbass5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kbval 28813 |
. . . . . . . 8
| |
| 2 | 1 | 3expa 1265 |
. . . . . . 7
|
| 3 | 2 | adantll 750 |
. . . . . 6
|
| 4 | 3 | fveq2d 6195 |
. . . . 5
|
| 5 | simplll 798 |
. . . . . 6
| |
| 6 | simpllr 799 |
. . . . . 6
| |
| 7 | simpr 477 |
. . . . . . . 8
| |
| 8 | simplrr 801 |
. . . . . . . 8
| |
| 9 | hicl 27937 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2anc 693 |
. . . . . . 7
|
| 11 | simplrl 800 |
. . . . . . 7
| |
| 12 | hvmulcl 27870 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | syl2anc 693 |
. . . . . 6
|
| 14 | kbval 28813 |
. . . . . 6
| |
| 15 | 5, 6, 13, 14 | syl3anc 1326 |
. . . . 5
|
| 16 | 4, 15 | eqtrd 2656 |
. . . 4
|
| 17 | kbop 28812 |
. . . . . 6
| |
| 18 | 17 | adantl 482 |
. . . . 5
|
| 19 | fvco3 6275 |
. . . . 5
| |
| 20 | 18, 19 | sylan 488 |
. . . 4
|
| 21 | kbval 28813 |
. . . . . . 7
| |
| 22 | 5, 6, 11, 21 | syl3anc 1326 |
. . . . . 6
|
| 23 | 22 | oveq2d 6666 |
. . . . 5
|
| 24 | kbop 28812 |
. . . . . . . . 9
| |
| 25 | 24 | ffvelrnda 6359 |
. . . . . . . 8
|
| 26 | 25 | adantrr 753 |
. . . . . . 7
|
| 27 | 26 | adantr 481 |
. . . . . 6
|
| 28 | kbval 28813 |
. . . . . 6
| |
| 29 | 27, 8, 7, 28 | syl3anc 1326 |
. . . . 5
|
| 30 | ax-his3 27941 |
. . . . . . . 8
| |
| 31 | 10, 11, 6, 30 | syl3anc 1326 |
. . . . . . 7
|
| 32 | 31 | oveq1d 6665 |
. . . . . 6
|
| 33 | hicl 27937 |
. . . . . . . 8
| |
| 34 | 11, 6, 33 | syl2anc 693 |
. . . . . . 7
|
| 35 | ax-hvmulass 27864 |
. . . . . . 7
| |
| 36 | 10, 34, 5, 35 | syl3anc 1326 |
. . . . . 6
|
| 37 | 32, 36 | eqtrd 2656 |
. . . . 5
|
| 38 | 23, 29, 37 | 3eqtr4d 2666 |
. . . 4
|
| 39 | 16, 20, 38 | 3eqtr4d 2666 |
. . 3
|
| 40 | 39 | ralrimiva 2966 |
. 2
|
| 41 | fco 6058 |
. . . 4
| |
| 42 | 24, 17, 41 | syl2an 494 |
. . 3
|
| 43 | kbop 28812 |
. . . . 5
| |
| 44 | 25, 43 | sylan 488 |
. . . 4
|
| 45 | 44 | anasss 679 |
. . 3
|
| 46 | ffn 6045 |
. . . 4
| |
| 47 | ffn 6045 |
. . . 4
| |
| 48 | eqfnfv 6311 |
. . . 4
| |
| 49 | 46, 47, 48 | syl2an 494 |
. . 3
|
| 50 | 42, 45, 49 | syl2anc 693 |
. 2
|
| 51 | 40, 50 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-hilex 27856 ax-hfvmul 27862 ax-hvmulass 27864 ax-hfi 27936 ax-his3 27941 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-kb 28710 |
| This theorem is referenced by: kbass6 28980 |
| Copyright terms: Public domain | W3C validator |