MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem10 Structured version   Visualization version   Unicode version

Theorem kmlem10 8981
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
Assertion
Ref Expression
kmlem10  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  ->  E. y A. z  e.  A  ph )
Distinct variable groups:    x, y,
z, w, u, t, h    y, A, z, w, h    ph, h
Allowed substitution hints:    ph( x, y, z, w, u, t)    A( x, u, t)

Proof of Theorem kmlem10
StepHypRef Expression
1 kmlem9.1 . . 3  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
21kmlem9 8980 . 2  |-  A. z  e.  A  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )
3 vex 3203 . . . . 5  |-  x  e. 
_V
43abrexex 7141 . . . 4  |-  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }  e.  _V
51, 4eqeltri 2697 . . 3  |-  A  e. 
_V
6 raleq 3138 . . . . 5  |-  ( h  =  A  ->  ( A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) )  <->  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) ) )
76raleqbi1dv 3146 . . . 4  |-  ( h  =  A  ->  ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) )  <->  A. z  e.  A  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) ) )
8 raleq 3138 . . . . 5  |-  ( h  =  A  ->  ( A. z  e.  h  ph  <->  A. z  e.  A  ph ) )
98exbidv 1850 . . . 4  |-  ( h  =  A  ->  ( E. y A. z  e.  h  ph  <->  E. y A. z  e.  A  ph ) )
107, 9imbi12d 334 . . 3  |-  ( h  =  A  ->  (
( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  <->  ( A. z  e.  A  A. w  e.  A  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  ->  E. y A. z  e.  A  ph ) ) )
115, 10spcv 3299 . 2  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  -> 
( A. z  e.  A  A. w  e.  A  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  A  ph ) )
122, 11mpi 20 1  |-  ( A. h ( A. z  e.  h  A. w  e.  h  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  E. y A. z  e.  h  ph )  ->  E. y A. z  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    = wceq 1483   E.wex 1704   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573   (/)c0 3915   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  kmlem13  8984
  Copyright terms: Public domain W3C validator