MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfackm Structured version   Visualization version   Unicode version

Theorem dfackm 8988
Description: Equivalence of the Axiom of Choice and Maes' AC ackm 9287. The proof consists of lemmas kmlem1 8972 through kmlem16 8987 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e. replacing dfac5 8951 with biid 251) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfackm  |-  (CHOICE  <->  A. x E. y A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) ) )
Distinct variable group:    x, y, z, v, u

Proof of Theorem dfackm
Dummy variables  w  t  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac5 8951 . 2  |-  (CHOICE  <->  A. x
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
2 eqid 2622 . . . . 5  |-  { t  |  E. h  e.  x  t  =  ( h  \  U. (
x  \  { h } ) ) }  =  { t  |  E. h  e.  x  t  =  ( h  \ 
U. ( x  \  { h } ) ) }
32kmlem13 8984 . . . 4  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  <->  A. x
( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) ) )
4 kmlem8 8979 . . . . 5  |-  ( ( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  (
z  i^i  y )
) )  <->  ( E. z  e.  x  A. v  e.  z  E. w  e.  x  (
z  =/=  w  /\  v  e.  ( z  i^i  w ) )  \/ 
E. y ( -.  y  e.  x  /\  A. z  e.  x  E! v  v  e.  ( z  i^i  y ) ) ) )
54albii 1747 . . . 4  |-  ( A. x ( -.  E. z  e.  x  A. v  e.  z  E. w  e.  x  (
z  =/=  w  /\  v  e.  ( z  i^i  w ) )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! v  v  e.  ( z  i^i  y ) ) )  <->  A. x ( E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  \/  E. y ( -.  y  e.  x  /\  A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) ) )
63, 5bitri 264 . . 3  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  <->  A. x
( E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  \/  E. y ( -.  y  e.  x  /\  A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) ) )
7 df-ne 2795 . . . . . . . . 9  |-  ( y  =/=  v  <->  -.  y  =  v )
87bicomi 214 . . . . . . . 8  |-  ( -.  y  =  v  <->  y  =/=  v )
98anbi2i 730 . . . . . . 7  |-  ( ( v  e.  x  /\  -.  y  =  v
)  <->  ( v  e.  x  /\  y  =/=  v ) )
109anbi1i 731 . . . . . 6  |-  ( ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )  <->  ( (
v  e.  x  /\  y  =/=  v )  /\  z  e.  v )
)
1110imbi2i 326 . . . . 5  |-  ( ( z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
)  <->  ( z  e.  y  ->  ( (
v  e.  x  /\  y  =/=  v )  /\  z  e.  v )
) )
12 biid 251 . . . . 5  |-  ( ( z  e.  x  -> 
( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) )  <-> 
( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) )
13 biid 251 . . . . 5  |-  ( A. z  e.  x  E! v  v  e.  (
z  i^i  y )  <->  A. z  e.  x  E! v  v  e.  ( z  i^i  y ) )
1411, 12, 13kmlem16 8987 . . . 4  |-  ( ( E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  (
z  i^i  w )
)  \/  E. y
( -.  y  e.  x  /\  A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )  <->  E. y A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) ) )
1514albii 1747 . . 3  |-  ( A. x ( E. z  e.  x  A. v  e.  z  E. w  e.  x  ( z  =/=  w  /\  v  e.  ( z  i^i  w
) )  \/  E. y ( -.  y  e.  x  /\  A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )  <->  A. x E. y A. z E. v A. u ( ( y  e.  x  /\  (
z  e.  y  -> 
( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v )
) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  ( ( v  e.  z  /\  v  e.  y )  /\  (
( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) ) )
166, 15bitri 264 . 2  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  <->  A. x E. y A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) ) )
171, 16bitri 264 1  |-  (CHOICE  <->  A. x E. y A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573   (/)c0 3915   {csn 4177   U.cuni 4436  CHOICEwac 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ac 8939
This theorem is referenced by:  axac3  9286  ackm  9287  axac2  9288
  Copyright terms: Public domain W3C validator