Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautset Structured version   Visualization version   Unicode version

Theorem lautset 35368
Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b  |-  B  =  ( Base `  K
)
lautset.l  |-  .<_  =  ( le `  K )
lautset.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautset  |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
Distinct variable groups:    x, f,
y, B    f, K, x, y    .<_ , f
Allowed substitution hints:    A( x, y, f)    I( x, y, f)    .<_ ( x, y)

Proof of Theorem lautset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 lautset.i . . 3  |-  I  =  ( LAut `  K
)
3 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
4 lautset.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2674 . . . . . . . 8  |-  ( k  =  K  ->  ( Base `  k )  =  B )
6 f1oeq2 6128 . . . . . . . 8  |-  ( (
Base `  k )  =  B  ->  ( f : ( Base `  k
)
-1-1-onto-> ( Base `  k )  <->  f : B -1-1-onto-> ( Base `  k
) ) )
75, 6syl 17 . . . . . . 7  |-  ( k  =  K  ->  (
f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> ( Base `  k ) ) )
8 f1oeq3 6129 . . . . . . . 8  |-  ( (
Base `  k )  =  B  ->  ( f : B -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> B
) )
95, 8syl 17 . . . . . . 7  |-  ( k  =  K  ->  (
f : B -1-1-onto-> ( Base `  k )  <->  f : B
-1-1-onto-> B ) )
107, 9bitrd 268 . . . . . 6  |-  ( k  =  K  ->  (
f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> B
) )
11 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
12 lautset.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
1311, 12syl6eqr 2674 . . . . . . . . . 10  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1413breqd 4664 . . . . . . . . 9  |-  ( k  =  K  ->  (
x ( le `  k ) y  <->  x  .<_  y ) )
1513breqd 4664 . . . . . . . . 9  |-  ( k  =  K  ->  (
( f `  x
) ( le `  k ) ( f `
 y )  <->  ( f `  x )  .<_  ( f `
 y ) ) )
1614, 15bibi12d 335 . . . . . . . 8  |-  ( k  =  K  ->  (
( x ( le
`  k ) y  <-> 
( f `  x
) ( le `  k ) ( f `
 y ) )  <-> 
( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
175, 16raleqbidv 3152 . . . . . . 7  |-  ( k  =  K  ->  ( A. y  e.  ( Base `  k ) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) )  <->  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
185, 17raleqbidv 3152 . . . . . 6  |-  ( k  =  K  ->  ( A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k
) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
1910, 18anbi12d 747 . . . . 5  |-  ( k  =  K  ->  (
( f : (
Base `  k ) -1-1-onto-> ( Base `  k )  /\  A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k
) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) )  <->  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) ) )
2019abbidv 2741 . . . 4  |-  ( k  =  K  ->  { f  |  ( f : ( Base `  k
)
-1-1-onto-> ( Base `  k )  /\  A. x  e.  (
Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) ) }  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
21 df-laut 35275 . . . 4  |-  LAut  =  ( k  e.  _V  |->  { f  |  ( f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  /\  A. x  e.  ( Base `  k
) A. y  e.  ( Base `  k
) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) ) } )
22 fvex 6201 . . . . . . . . 9  |-  ( Base `  K )  e.  _V
234, 22eqeltri 2697 . . . . . . . 8  |-  B  e. 
_V
2423, 23mapval 7869 . . . . . . 7  |-  ( B  ^m  B )  =  { f  |  f : B --> B }
25 ovex 6678 . . . . . . 7  |-  ( B  ^m  B )  e. 
_V
2624, 25eqeltrri 2698 . . . . . 6  |-  { f  |  f : B --> B }  e.  _V
27 f1of 6137 . . . . . . 7  |-  ( f : B -1-1-onto-> B  ->  f : B
--> B )
2827ss2abi 3674 . . . . . 6  |-  { f  |  f : B -1-1-onto-> B }  C_  { f  |  f : B --> B }
2926, 28ssexi 4803 . . . . 5  |-  { f  |  f : B -1-1-onto-> B }  e.  _V
30 simpl 473 . . . . . 6  |-  ( ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) )  ->  f : B
-1-1-onto-> B )
3130ss2abi 3674 . . . . 5  |-  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) }  C_  { f  |  f : B -1-1-onto-> B }
3229, 31ssexi 4803 . . . 4  |-  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) }  e.  _V
3320, 21, 32fvmpt 6282 . . 3  |-  ( K  e.  _V  ->  ( LAut `  K )  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
342, 33syl5eq 2668 . 2  |-  ( K  e.  _V  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
351, 34syl 17 1  |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200   class class class wbr 4653   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857   lecple 15948   LAutclaut 35271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-laut 35275
This theorem is referenced by:  islaut  35369
  Copyright terms: Public domain W3C validator