MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf0val Structured version   Visualization version   Unicode version

Theorem lcmf0val 15335
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmf0val  |-  ( ( Z  C_  ZZ  /\  0  e.  Z )  ->  (lcm `  Z )  =  0 )

Proof of Theorem lcmf0val
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcmf 15304 . . 3  |- lcm  =  ( z  e.  ~P ZZ  |->  if ( 0  e.  z ,  0 , inf ( { n  e.  NN  |  A. m  e.  z  m  ||  n } ,  RR ,  <  )
) )
21a1i 11 . 2  |-  ( ( Z  C_  ZZ  /\  0  e.  Z )  -> lcm  =  ( z  e.  ~P ZZ  |->  if ( 0  e.  z ,  0 , inf ( { n  e.  NN  |  A. m  e.  z  m  ||  n } ,  RR ,  <  )
) ) )
3 eleq2 2690 . . . 4  |-  ( z  =  Z  ->  (
0  e.  z  <->  0  e.  Z ) )
4 raleq 3138 . . . . . 6  |-  ( z  =  Z  ->  ( A. m  e.  z  m  ||  n  <->  A. m  e.  Z  m  ||  n
) )
54rabbidv 3189 . . . . 5  |-  ( z  =  Z  ->  { n  e.  NN  |  A. m  e.  z  m  ||  n }  =  { n  e.  NN  |  A. m  e.  Z  m  ||  n } )
65infeq1d 8383 . . . 4  |-  ( z  =  Z  -> inf ( { n  e.  NN  |  A. m  e.  z  m  ||  n } ,  RR ,  <  )  = inf ( { n  e.  NN  |  A. m  e.  Z  m  ||  n } ,  RR ,  <  ) )
73, 6ifbieq2d 4111 . . 3  |-  ( z  =  Z  ->  if ( 0  e.  z ,  0 , inf ( { n  e.  NN  |  A. m  e.  z  m  ||  n } ,  RR ,  <  )
)  =  if ( 0  e.  Z , 
0 , inf ( { n  e.  NN  |  A. m  e.  Z  m  ||  n } ,  RR ,  <  ) ) )
8 iftrue 4092 . . . 4  |-  ( 0  e.  Z  ->  if ( 0  e.  Z ,  0 , inf ( { n  e.  NN  |  A. m  e.  Z  m  ||  n } ,  RR ,  <  ) )  =  0 )
98adantl 482 . . 3  |-  ( ( Z  C_  ZZ  /\  0  e.  Z )  ->  if ( 0  e.  Z ,  0 , inf ( { n  e.  NN  |  A. m  e.  Z  m  ||  n } ,  RR ,  <  ) )  =  0 )
107, 9sylan9eqr 2678 . 2  |-  ( ( ( Z  C_  ZZ  /\  0  e.  Z )  /\  z  =  Z )  ->  if (
0  e.  z ,  0 , inf ( { n  e.  NN  |  A. m  e.  z  m  ||  n } ,  RR ,  <  ) )  =  0 )
11 zex 11386 . . . . . 6  |-  ZZ  e.  _V
1211ssex 4802 . . . . 5  |-  ( Z 
C_  ZZ  ->  Z  e. 
_V )
13 elpwg 4166 . . . . 5  |-  ( Z  e.  _V  ->  ( Z  e.  ~P ZZ  <->  Z 
C_  ZZ ) )
1412, 13syl 17 . . . 4  |-  ( Z 
C_  ZZ  ->  ( Z  e.  ~P ZZ  <->  Z  C_  ZZ ) )
1514ibir 257 . . 3  |-  ( Z 
C_  ZZ  ->  Z  e. 
~P ZZ )
1615adantr 481 . 2  |-  ( ( Z  C_  ZZ  /\  0  e.  Z )  ->  Z  e.  ~P ZZ )
17 simpr 477 . 2  |-  ( ( Z  C_  ZZ  /\  0  e.  Z )  ->  0  e.  Z )
182, 10, 16, 17fvmptd 6288 1  |-  ( ( Z  C_  ZZ  /\  0  e.  Z )  ->  (lcm `  Z )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  infcinf 8347   RRcr 9935   0cc0 9936    < clt 10074   NNcn 11020   ZZcz 11377    || cdvds 14983  lcmclcmf 15302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-sup 8348  df-inf 8349  df-neg 10269  df-z 11378  df-lcmf 15304
This theorem is referenced by:  lcmfcl  15341  lcmfeq0b  15343  dvdslcmf  15344  lcmftp  15349  lcmfunsnlem2  15353
  Copyright terms: Public domain W3C validator