Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvfbr Structured version   Visualization version   Unicode version

Theorem lcvfbr 34307
Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s  |-  S  =  ( LSubSp `  W )
lcvfbr.c  |-  C  =  (  <oLL  `  W )
lcvfbr.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
lcvfbr  |-  ( ph  ->  C  =  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) } )
Distinct variable groups:    t, s, u, S    W, s, t, u
Allowed substitution hints:    ph( u, t, s)    C( u, t, s)    X( u, t, s)

Proof of Theorem lcvfbr
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lcvfbr.c . 2  |-  C  =  (  <oLL  `  W )
2 lcvfbr.w . . 3  |-  ( ph  ->  W  e.  X )
3 elex 3212 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
4 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
5 lcvfbr.s . . . . . . . . 9  |-  S  =  ( LSubSp `  W )
64, 5syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
76eleq2d 2687 . . . . . . 7  |-  ( w  =  W  ->  (
t  e.  ( LSubSp `  w )  <->  t  e.  S ) )
86eleq2d 2687 . . . . . . 7  |-  ( w  =  W  ->  (
u  e.  ( LSubSp `  w )  <->  u  e.  S ) )
97, 8anbi12d 747 . . . . . 6  |-  ( w  =  W  ->  (
( t  e.  (
LSubSp `  w )  /\  u  e.  ( LSubSp `  w ) )  <->  ( t  e.  S  /\  u  e.  S ) ) )
106rexeqdv 3145 . . . . . . . 8  |-  ( w  =  W  ->  ( E. s  e.  ( LSubSp `
 w ) ( t  C.  s  /\  s  C.  u )  <->  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) )
1110notbid 308 . . . . . . 7  |-  ( w  =  W  ->  ( -.  E. s  e.  (
LSubSp `  w ) ( t  C.  s  /\  s  C.  u )  <->  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) )
1211anbi2d 740 . . . . . 6  |-  ( w  =  W  ->  (
( t  C.  u  /\  -.  E. s  e.  ( LSubSp `  w )
( t  C.  s  /\  s  C.  u ) )  <->  ( t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) ) )
139, 12anbi12d 747 . . . . 5  |-  ( w  =  W  ->  (
( ( t  e.  ( LSubSp `  w )  /\  u  e.  ( LSubSp `
 w ) )  /\  ( t  C.  u  /\  -.  E. s  e.  ( LSubSp `  w )
( t  C.  s  /\  s  C.  u ) ) )  <->  ( (
t  e.  S  /\  u  e.  S )  /\  ( t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u
) ) ) ) )
1413opabbidv 4716 . . . 4  |-  ( w  =  W  ->  { <. t ,  u >.  |  ( ( t  e.  (
LSubSp `  w )  /\  u  e.  ( LSubSp `  w ) )  /\  ( t  C.  u  /\  -.  E. s  e.  ( LSubSp `  w )
( t  C.  s  /\  s  C.  u ) ) ) }  =  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S )  /\  (
t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) ) } )
15 df-lcv 34306 . . . 4  |-  <oLL  =  (
w  e.  _V  |->  {
<. t ,  u >.  |  ( ( t  e.  ( LSubSp `  w )  /\  u  e.  ( LSubSp `
 w ) )  /\  ( t  C.  u  /\  -.  E. s  e.  ( LSubSp `  w )
( t  C.  s  /\  s  C.  u ) ) ) } )
16 fvex 6201 . . . . . . 7  |-  ( LSubSp `  W )  e.  _V
175, 16eqeltri 2697 . . . . . 6  |-  S  e. 
_V
1817, 17xpex 6962 . . . . 5  |-  ( S  X.  S )  e. 
_V
19 opabssxp 5193 . . . . 5  |-  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) }  C_  ( S  X.  S )
2018, 19ssexi 4803 . . . 4  |-  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) }  e.  _V
2114, 15, 20fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  (  <oLL  `  W )  =  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S )  /\  (
t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) ) } )
222, 3, 213syl 18 . 2  |-  ( ph  ->  (  <oLL  `  W )  =  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S )  /\  (
t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) ) } )
231, 22syl5eq 2668 1  |-  ( ph  ->  C  =  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C. wpss 3575   {copab 4712    X. cxp 5112   ` cfv 5888   LSubSpclss 18932    <oLL clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lcv 34306
This theorem is referenced by:  lcvbr  34308
  Copyright terms: Public domain W3C validator