Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr Structured version   Visualization version   Unicode version

Theorem lcvbr 34308
Description: The covers relation for a left vector space (or a left module). (cvbr 29141 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s  |-  S  =  ( LSubSp `  W )
lcvfbr.c  |-  C  =  (  <oLL  `  W )
lcvfbr.w  |-  ( ph  ->  W  e.  X )
lcvfbr.t  |-  ( ph  ->  T  e.  S )
lcvfbr.u  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lcvbr  |-  ( ph  ->  ( T C U  <-> 
( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U
) ) ) )
Distinct variable groups:    S, s    W, s    T, s    U, s
Allowed substitution hints:    ph( s)    C( s)    X( s)

Proof of Theorem lcvbr
Dummy variables  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvfbr.t . . 3  |-  ( ph  ->  T  e.  S )
2 lcvfbr.u . . 3  |-  ( ph  ->  U  e.  S )
3 eleq1 2689 . . . . . 6  |-  ( t  =  T  ->  (
t  e.  S  <->  T  e.  S ) )
43anbi1d 741 . . . . 5  |-  ( t  =  T  ->  (
( t  e.  S  /\  u  e.  S
)  <->  ( T  e.  S  /\  u  e.  S ) ) )
5 psseq1 3694 . . . . . 6  |-  ( t  =  T  ->  (
t  C.  u  <->  T  C.  u
) )
6 psseq1 3694 . . . . . . . . 9  |-  ( t  =  T  ->  (
t  C.  s  <->  T  C.  s
) )
76anbi1d 741 . . . . . . . 8  |-  ( t  =  T  ->  (
( t  C.  s  /\  s  C.  u )  <-> 
( T  C.  s  /\  s  C.  u ) ) )
87rexbidv 3052 . . . . . . 7  |-  ( t  =  T  ->  ( E. s  e.  S  ( t  C.  s  /\  s  C.  u )  <->  E. s  e.  S  ( T  C.  s  /\  s  C.  u ) ) )
98notbid 308 . . . . . 6  |-  ( t  =  T  ->  ( -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u )  <->  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  u ) ) )
105, 9anbi12d 747 . . . . 5  |-  ( t  =  T  ->  (
( t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u
) )  <->  ( T  C.  u  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  u ) ) ) )
114, 10anbi12d 747 . . . 4  |-  ( t  =  T  ->  (
( ( t  e.  S  /\  u  e.  S )  /\  (
t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) )  <->  ( ( T  e.  S  /\  u  e.  S )  /\  ( T  C.  u  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  u
) ) ) ) )
12 eleq1 2689 . . . . . 6  |-  ( u  =  U  ->  (
u  e.  S  <->  U  e.  S ) )
1312anbi2d 740 . . . . 5  |-  ( u  =  U  ->  (
( T  e.  S  /\  u  e.  S
)  <->  ( T  e.  S  /\  U  e.  S ) ) )
14 psseq2 3695 . . . . . 6  |-  ( u  =  U  ->  ( T  C.  u  <->  T  C.  U
) )
15 psseq2 3695 . . . . . . . . 9  |-  ( u  =  U  ->  (
s  C.  u  <->  s  C.  U
) )
1615anbi2d 740 . . . . . . . 8  |-  ( u  =  U  ->  (
( T  C.  s  /\  s  C.  u )  <-> 
( T  C.  s  /\  s  C.  U ) ) )
1716rexbidv 3052 . . . . . . 7  |-  ( u  =  U  ->  ( E. s  e.  S  ( T  C.  s  /\  s  C.  u )  <->  E. s  e.  S  ( T  C.  s  /\  s  C.  U ) ) )
1817notbid 308 . . . . . 6  |-  ( u  =  U  ->  ( -.  E. s  e.  S  ( T  C.  s  /\  s  C.  u )  <->  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U ) ) )
1914, 18anbi12d 747 . . . . 5  |-  ( u  =  U  ->  (
( T  C.  u  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  u
) )  <->  ( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U ) ) ) )
2013, 19anbi12d 747 . . . 4  |-  ( u  =  U  ->  (
( ( T  e.  S  /\  u  e.  S )  /\  ( T  C.  u  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  u ) ) )  <->  ( ( T  e.  S  /\  U  e.  S )  /\  ( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U ) ) ) ) )
21 eqid 2622 . . . 4  |-  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) }  =  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S )  /\  (
t  C.  u  /\  -.  E. s  e.  S  ( t  C.  s  /\  s  C.  u ) ) ) }
2211, 20, 21brabg 4994 . . 3  |-  ( ( T  e.  S  /\  U  e.  S )  ->  ( T { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) } U  <->  ( ( T  e.  S  /\  U  e.  S )  /\  ( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U
) ) ) ) )
231, 2, 22syl2anc 693 . 2  |-  ( ph  ->  ( T { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) } U  <->  ( ( T  e.  S  /\  U  e.  S )  /\  ( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U
) ) ) ) )
24 lcvfbr.s . . . 4  |-  S  =  ( LSubSp `  W )
25 lcvfbr.c . . . 4  |-  C  =  (  <oLL  `  W )
26 lcvfbr.w . . . 4  |-  ( ph  ->  W  e.  X )
2724, 25, 26lcvfbr 34307 . . 3  |-  ( ph  ->  C  =  { <. t ,  u >.  |  ( ( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) } )
2827breqd 4664 . 2  |-  ( ph  ->  ( T C U  <-> 
T { <. t ,  u >.  |  (
( t  e.  S  /\  u  e.  S
)  /\  ( t  C.  u  /\  -.  E. s  e.  S  (
t  C.  s  /\  s  C.  u ) ) ) } U ) )
291, 2jca 554 . . 3  |-  ( ph  ->  ( T  e.  S  /\  U  e.  S
) )
3029biantrurd 529 . 2  |-  ( ph  ->  ( ( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U ) )  <->  ( ( T  e.  S  /\  U  e.  S )  /\  ( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U
) ) ) ) )
3123, 28, 303bitr4d 300 1  |-  ( ph  ->  ( T C U  <-> 
( T  C.  U  /\  -.  E. s  e.  S  ( T  C.  s  /\  s  C.  U
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C. wpss 3575   class class class wbr 4653   {copab 4712   ` cfv 5888   LSubSpclss 18932    <oLL clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lcv 34306
This theorem is referenced by:  lcvbr2  34309  lcvbr3  34310  lcvpss  34311  lcvnbtwn  34312  lsatcv0  34318  mapdcv  36949
  Copyright terms: Public domain W3C validator