Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilval Structured version   Visualization version   Unicode version

Theorem ldilval 35399
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ldilval.b  |-  B  =  ( Base `  K
)
ldilval.l  |-  .<_  =  ( le `  K )
ldilval.h  |-  H  =  ( LHyp `  K
)
ldilval.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
ldilval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( F `  X )  =  X )

Proof of Theorem ldilval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ldilval.b . . . . 5  |-  B  =  ( Base `  K
)
2 ldilval.l . . . . 5  |-  .<_  =  ( le `  K )
3 ldilval.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 eqid 2622 . . . . 5  |-  ( LAut `  K )  =  (
LAut `  K )
5 ldilval.d . . . . 5  |-  D  =  ( ( LDil `  K
) `  W )
61, 2, 3, 4, 5isldil 35396 . . . 4  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( F  e.  D  <->  ( F  e.  ( LAut `  K )  /\  A. x  e.  B  (
x  .<_  W  ->  ( F `  x )  =  x ) ) ) )
7 simpr 477 . . . 4  |-  ( ( F  e.  ( LAut `  K )  /\  A. x  e.  B  (
x  .<_  W  ->  ( F `  x )  =  x ) )  ->  A. x  e.  B  ( x  .<_  W  -> 
( F `  x
)  =  x ) )
86, 7syl6bi 243 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( F  e.  D  ->  A. x  e.  B  ( x  .<_  W  -> 
( F `  x
)  =  x ) ) )
9 breq1 4656 . . . . . 6  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
10 fveq2 6191 . . . . . . 7  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
11 id 22 . . . . . . 7  |-  ( x  =  X  ->  x  =  X )
1210, 11eqeq12d 2637 . . . . . 6  |-  ( x  =  X  ->  (
( F `  x
)  =  x  <->  ( F `  X )  =  X ) )
139, 12imbi12d 334 . . . . 5  |-  ( x  =  X  ->  (
( x  .<_  W  -> 
( F `  x
)  =  x )  <-> 
( X  .<_  W  -> 
( F `  X
)  =  X ) ) )
1413rspccv 3306 . . . 4  |-  ( A. x  e.  B  (
x  .<_  W  ->  ( F `  x )  =  x )  ->  ( X  e.  B  ->  ( X  .<_  W  ->  ( F `  X )  =  X ) ) )
1514impd 447 . . 3  |-  ( A. x  e.  B  (
x  .<_  W  ->  ( F `  x )  =  x )  ->  (
( X  e.  B  /\  X  .<_  W )  ->  ( F `  X )  =  X ) )
168, 15syl6 35 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( F  e.  D  ->  ( ( X  e.  B  /\  X  .<_  W )  ->  ( F `  X )  =  X ) ) )
17163imp 1256 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( F `  X )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   LHypclh 35270   LAutclaut 35271   LDilcldil 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ldil 35390
This theorem is referenced by:  ldilcnv  35401  ldilco  35402  ltrnval1  35420
  Copyright terms: Public domain W3C validator