Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Visualization version   Unicode version

Theorem ldilcnv 35401
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h  |-  H  =  ( LHyp `  K
)
ldilcnv.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
ldilcnv  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  `' F  e.  D )

Proof of Theorem ldilcnv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  K  e.  HL )
2 ldilcnv.h . . . 4  |-  H  =  ( LHyp `  K
)
3 eqid 2622 . . . 4  |-  ( LAut `  K )  =  (
LAut `  K )
4 ldilcnv.d . . . 4  |-  D  =  ( ( LDil `  K
) `  W )
52, 3, 4ldillaut 35397 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  F  e.  ( LAut `  K )
)
63lautcnv 35376 . . 3  |-  ( ( K  e.  HL  /\  F  e.  ( LAut `  K ) )  ->  `' F  e.  ( LAut `  K ) )
71, 5, 6syl2anc 693 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  `' F  e.  ( LAut `  K
) )
8 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
9 eqid 2622 . . . . . . . . 9  |-  ( le
`  K )  =  ( le `  K
)
108, 9, 2, 4ldilval 35399 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D  /\  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) )  ->  ( F `  x )  =  x )
11103expa 1265 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  (
x  e.  ( Base `  K )  /\  x
( le `  K
) W ) )  ->  ( F `  x )  =  x )
12113impb 1260 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( F `  x )  =  x )
1312fveq2d 6195 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( `' F `  ( F `  x ) )  =  ( `' F `  x ) )
148, 2, 4ldil1o 35398 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
15143ad2ant1 1082 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
16 simp2 1062 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  x  e.  ( Base `  K )
)
17 f1ocnvfv1 6532 . . . . . 6  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  x  e.  ( Base `  K )
)  ->  ( `' F `  ( F `  x ) )  =  x )
1815, 16, 17syl2anc 693 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( `' F `  ( F `  x ) )  =  x )
1913, 18eqtr3d 2658 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( `' F `  x )  =  x )
20193exp 1264 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  ( x  e.  ( Base `  K
)  ->  ( x
( le `  K
) W  ->  ( `' F `  x )  =  x ) ) )
2120ralrimiv 2965 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  A. x  e.  ( Base `  K
) ( x ( le `  K ) W  ->  ( `' F `  x )  =  x ) )
228, 9, 2, 3, 4isldil 35396 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( `' F  e.  D  <->  ( `' F  e.  ( LAut `  K
)  /\  A. x  e.  ( Base `  K
) ( x ( le `  K ) W  ->  ( `' F `  x )  =  x ) ) ) )
2322adantr 481 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  ( `' F  e.  D  <->  ( `' F  e.  ( LAut `  K )  /\  A. x  e.  ( Base `  K ) ( x ( le `  K
) W  ->  ( `' F `  x )  =  x ) ) ) )
247, 21, 23mpbir2and 957 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  `' F  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   `'ccnv 5113   -1-1-onto->wf1o 5887   ` cfv 5888   Basecbs 15857   lecple 15948   HLchlt 34637   LHypclh 35270   LAutclaut 35271   LDilcldil 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-laut 35275  df-ldil 35390
This theorem is referenced by:  ltrncnv  35432
  Copyright terms: Public domain W3C validator