Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldil1o Structured version   Visualization version   Unicode version

Theorem ldil1o 35398
Description: A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldil1o.b  |-  B  =  ( Base `  K
)
ldil1o.h  |-  H  =  ( LHyp `  K
)
ldil1o.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
ldil1o  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D )  ->  F : B -1-1-onto-> B )

Proof of Theorem ldil1o
StepHypRef Expression
1 simpll 790 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D )  ->  K  e.  V )
2 ldil1o.h . . 3  |-  H  =  ( LHyp `  K
)
3 eqid 2622 . . 3  |-  ( LAut `  K )  =  (
LAut `  K )
4 ldil1o.d . . 3  |-  D  =  ( ( LDil `  K
) `  W )
52, 3, 4ldillaut 35397 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D )  ->  F  e.  ( LAut `  K
) )
6 ldil1o.b . . 3  |-  B  =  ( Base `  K
)
76, 3laut1o 35371 . 2  |-  ( ( K  e.  V  /\  F  e.  ( LAut `  K ) )  ->  F : B -1-1-onto-> B )
81, 5, 7syl2anc 693 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D )  ->  F : B -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   -1-1-onto->wf1o 5887   ` cfv 5888   Basecbs 15857   LHypclh 35270   LAutclaut 35271   LDilcldil 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-laut 35275  df-ldil 35390
This theorem is referenced by:  ldilcnv  35401  ldilco  35402
  Copyright terms: Public domain W3C validator