Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi2a Structured version   Visualization version   Unicode version

Theorem lflvsdi2a 34367
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v  |-  V  =  ( Base `  W
)
lfldi.r  |-  R  =  (Scalar `  W )
lfldi.k  |-  K  =  ( Base `  R
)
lfldi.p  |-  .+  =  ( +g  `  R )
lfldi.t  |-  .x.  =  ( .r `  R )
lfldi.f  |-  F  =  (LFnl `  W )
lfldi.w  |-  ( ph  ->  W  e.  LMod )
lfldi.x  |-  ( ph  ->  X  e.  K )
lfldi2.y  |-  ( ph  ->  Y  e.  K )
lfldi2.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lflvsdi2a  |-  ( ph  ->  ( G  oF  .x.  ( V  X.  { ( X  .+  Y ) } ) )  =  ( ( G  oF  .x.  ( V  X.  { X } ) )  oF  .+  ( G  oF  .x.  ( V  X.  { Y }
) ) ) )

Proof of Theorem lflvsdi2a
StepHypRef Expression
1 lfldi.v . . . . . 6  |-  V  =  ( Base `  W
)
2 fvex 6201 . . . . . 6  |-  ( Base `  W )  e.  _V
31, 2eqeltri 2697 . . . . 5  |-  V  e. 
_V
43a1i 11 . . . 4  |-  ( ph  ->  V  e.  _V )
5 lfldi.x . . . 4  |-  ( ph  ->  X  e.  K )
6 lfldi2.y . . . 4  |-  ( ph  ->  Y  e.  K )
74, 5, 6ofc12 6922 . . 3  |-  ( ph  ->  ( ( V  X.  { X } )  oF  .+  ( V  X.  { Y }
) )  =  ( V  X.  { ( X  .+  Y ) } ) )
87oveq2d 6666 . 2  |-  ( ph  ->  ( G  oF  .x.  ( ( V  X.  { X }
)  oF  .+  ( V  X.  { Y } ) ) )  =  ( G  oF  .x.  ( V  X.  { ( X  .+  Y ) } ) ) )
9 lfldi.r . . 3  |-  R  =  (Scalar `  W )
10 lfldi.k . . 3  |-  K  =  ( Base `  R
)
11 lfldi.p . . 3  |-  .+  =  ( +g  `  R )
12 lfldi.t . . 3  |-  .x.  =  ( .r `  R )
13 lfldi.f . . 3  |-  F  =  (LFnl `  W )
14 lfldi.w . . 3  |-  ( ph  ->  W  e.  LMod )
15 lfldi2.g . . 3  |-  ( ph  ->  G  e.  F )
161, 9, 10, 11, 12, 13, 14, 5, 6, 15lflvsdi2 34366 . 2  |-  ( ph  ->  ( G  oF  .x.  ( ( V  X.  { X }
)  oF  .+  ( V  X.  { Y } ) ) )  =  ( ( G  oF  .x.  ( V  X.  { X }
) )  oF  .+  ( G  oF  .x.  ( V  X.  { Y } ) ) ) )
178, 16eqtr3d 2658 1  |-  ( ph  ->  ( G  oF  .x.  ( V  X.  { ( X  .+  Y ) } ) )  =  ( ( G  oF  .x.  ( V  X.  { X } ) )  oF  .+  ( G  oF  .x.  ( V  X.  { Y }
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   LModclmod 18863  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-map 7859  df-ring 18549  df-lmod 18865  df-lfl 34345
This theorem is referenced by:  ldualvsdi2  34431
  Copyright terms: Public domain W3C validator