MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llynlly Structured version   Visualization version   Unicode version

Theorem llynlly 21280
Description: A locally  A space is n-locally  A: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llynlly  |-  ( J  e. Locally  A  ->  J  e. 𝑛Locally  A )

Proof of Theorem llynlly
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21275 . 2  |-  ( J  e. Locally  A  ->  J  e. 
Top )
2 llyi 21277 . . . . 5  |-  ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  E. u  e.  J  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) )
3 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  ->  J  e. Locally  A )
43, 1syl 17 . . . . . . . . . 10  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  ->  J  e.  Top )
5 simprl 794 . . . . . . . . . 10  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  ->  u  e.  J )
6 simprr2 1110 . . . . . . . . . 10  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  -> 
y  e.  u )
7 opnneip 20923 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  u  e.  J  /\  y  e.  u )  ->  u  e.  ( ( nei `  J ) `
 { y } ) )
84, 5, 6, 7syl3anc 1326 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  ->  u  e.  ( ( nei `  J ) `  { y } ) )
9 simprr1 1109 . . . . . . . . . 10  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  ->  u  C_  x )
10 selpw 4165 . . . . . . . . . 10  |-  ( u  e.  ~P x  <->  u  C_  x
)
119, 10sylibr 224 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  ->  u  e.  ~P x
)
128, 11elind 3798 . . . . . . . 8  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  ->  u  e.  ( (
( nei `  J
) `  { y } )  i^i  ~P x ) )
13 simprr3 1111 . . . . . . . 8  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  -> 
( Jt  u )  e.  A
)
1412, 13jca 554 . . . . . . 7  |-  ( ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  /\  ( u  e.  J  /\  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) ) )  -> 
( u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x )  /\  ( Jt  u )  e.  A
) )
1514ex 450 . . . . . 6  |-  ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  ( ( u  e.  J  /\  ( u 
C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
) )  ->  (
u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x )  /\  ( Jt  u )  e.  A
) ) )
1615reximdv2 3014 . . . . 5  |-  ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  ( E. u  e.  J  ( u  C_  x  /\  y  e.  u  /\  ( Jt  u )  e.  A
)  ->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
172, 16mpd 15 . . . 4  |-  ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  E. u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A )
18173expb 1266 . . 3  |-  ( ( J  e. Locally  A  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
)
1918ralrimivva 2971 . 2  |-  ( J  e. Locally  A  ->  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
)
20 isnlly 21272 . 2  |-  ( J  e. 𝑛Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
211, 19, 20sylanbrc 698 1  |-  ( J  e. Locally  A  ->  J  e. 𝑛Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698   neicnei 20901  Locally clly 21267  𝑛Locally cnlly 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-top 20699  df-nei 20902  df-lly 21269  df-nlly 21270
This theorem is referenced by:  llyssnlly  21281  symgtgp  21905
  Copyright terms: Public domain W3C validator