| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnrot2 | Structured version Visualization version Unicode version | ||
| Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| btwnlng1.p |
|
| btwnlng1.i |
|
| btwnlng1.l |
|
| btwnlng1.g |
|
| btwnlng1.x |
|
| btwnlng1.y |
|
| btwnlng1.z |
|
| btwnlng1.d |
|
| lnrot2.1 |
|
| lnrot2.2 |
|
| Ref | Expression |
|---|---|
| lnrot2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnrot2.1 |
. 2
| |
| 2 | btwnlng1.p |
. . . . . 6
| |
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | btwnlng1.i |
. . . . . 6
| |
| 5 | btwnlng1.g |
. . . . . 6
| |
| 6 | btwnlng1.y |
. . . . . 6
| |
| 7 | btwnlng1.x |
. . . . . 6
| |
| 8 | btwnlng1.z |
. . . . . 6
| |
| 9 | 2, 3, 4, 5, 6, 7, 8 | tgbtwncomb 25384 |
. . . . 5
|
| 10 | biidd 252 |
. . . . 5
| |
| 11 | 2, 3, 4, 5, 6, 8, 7 | tgbtwncomb 25384 |
. . . . 5
|
| 12 | 9, 10, 11 | 3orbi123d 1398 |
. . . 4
|
| 13 | 3orrot 1044 |
. . . 4
| |
| 14 | 12, 13 | syl6bbr 278 |
. . 3
|
| 15 | btwnlng1.l |
. . . 4
| |
| 16 | lnrot2.2 |
. . . 4
| |
| 17 | 2, 15, 4, 5, 6, 8, 16, 7 | tgellng 25448 |
. . 3
|
| 18 | btwnlng1.d |
. . . 4
| |
| 19 | 2, 15, 4, 5, 7, 6, 18, 8 | tgellng 25448 |
. . 3
|
| 20 | 14, 17, 19 | 3bitr4d 300 |
. 2
|
| 21 | 1, 20 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: coltr 25542 mideulem2 25626 |
| Copyright terms: Public domain | W3C validator |