MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnrot2 Structured version   Visualization version   Unicode version

Theorem lnrot2 25519
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p  |-  P  =  ( Base `  G
)
btwnlng1.i  |-  I  =  (Itv `  G )
btwnlng1.l  |-  L  =  (LineG `  G )
btwnlng1.g  |-  ( ph  ->  G  e. TarskiG )
btwnlng1.x  |-  ( ph  ->  X  e.  P )
btwnlng1.y  |-  ( ph  ->  Y  e.  P )
btwnlng1.z  |-  ( ph  ->  Z  e.  P )
btwnlng1.d  |-  ( ph  ->  X  =/=  Y )
lnrot2.1  |-  ( ph  ->  X  e.  ( Y L Z ) )
lnrot2.2  |-  ( ph  ->  Y  =/=  Z )
Assertion
Ref Expression
lnrot2  |-  ( ph  ->  Z  e.  ( X L Y ) )

Proof of Theorem lnrot2
StepHypRef Expression
1 lnrot2.1 . 2  |-  ( ph  ->  X  e.  ( Y L Z ) )
2 btwnlng1.p . . . . . 6  |-  P  =  ( Base `  G
)
3 eqid 2622 . . . . . 6  |-  ( dist `  G )  =  (
dist `  G )
4 btwnlng1.i . . . . . 6  |-  I  =  (Itv `  G )
5 btwnlng1.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
6 btwnlng1.y . . . . . 6  |-  ( ph  ->  Y  e.  P )
7 btwnlng1.x . . . . . 6  |-  ( ph  ->  X  e.  P )
8 btwnlng1.z . . . . . 6  |-  ( ph  ->  Z  e.  P )
92, 3, 4, 5, 6, 7, 8tgbtwncomb 25384 . . . . 5  |-  ( ph  ->  ( X  e.  ( Y I Z )  <-> 
X  e.  ( Z I Y ) ) )
10 biidd 252 . . . . 5  |-  ( ph  ->  ( Y  e.  ( X I Z )  <-> 
Y  e.  ( X I Z ) ) )
112, 3, 4, 5, 6, 8, 7tgbtwncomb 25384 . . . . 5  |-  ( ph  ->  ( Z  e.  ( Y I X )  <-> 
Z  e.  ( X I Y ) ) )
129, 10, 113orbi123d 1398 . . . 4  |-  ( ph  ->  ( ( X  e.  ( Y I Z )  \/  Y  e.  ( X I Z )  \/  Z  e.  ( Y I X ) )  <->  ( X  e.  ( Z I Y )  \/  Y  e.  ( X I Z )  \/  Z  e.  ( X I Y ) ) ) )
13 3orrot 1044 . . . 4  |-  ( ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) )  <-> 
( X  e.  ( Z I Y )  \/  Y  e.  ( X I Z )  \/  Z  e.  ( X I Y ) ) )
1412, 13syl6bbr 278 . . 3  |-  ( ph  ->  ( ( X  e.  ( Y I Z )  \/  Y  e.  ( X I Z )  \/  Z  e.  ( Y I X ) )  <->  ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )
15 btwnlng1.l . . . 4  |-  L  =  (LineG `  G )
16 lnrot2.2 . . . 4  |-  ( ph  ->  Y  =/=  Z )
172, 15, 4, 5, 6, 8, 16, 7tgellng 25448 . . 3  |-  ( ph  ->  ( X  e.  ( Y L Z )  <-> 
( X  e.  ( Y I Z )  \/  Y  e.  ( X I Z )  \/  Z  e.  ( Y I X ) ) ) )
18 btwnlng1.d . . . 4  |-  ( ph  ->  X  =/=  Y )
192, 15, 4, 5, 7, 6, 18, 8tgellng 25448 . . 3  |-  ( ph  ->  ( Z  e.  ( X L Y )  <-> 
( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )
2014, 17, 193bitr4d 300 . 2  |-  ( ph  ->  ( X  e.  ( Y L Z )  <-> 
Z  e.  ( X L Y ) ) )
211, 20mpbid 222 1  |-  ( ph  ->  Z  e.  ( X L Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  coltr  25542  mideulem2  25626
  Copyright terms: Public domain W3C validator