MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgellng Structured version   Visualization version   Unicode version

Theorem tgellng 25448
Description: Property of lying on the line going through points  X and  Y. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation  Z  e.  ( X (LineG `  G
) Y ) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p  |-  P  =  ( Base `  G
)
tglngval.l  |-  L  =  (LineG `  G )
tglngval.i  |-  I  =  (Itv `  G )
tglngval.g  |-  ( ph  ->  G  e. TarskiG )
tglngval.x  |-  ( ph  ->  X  e.  P )
tglngval.y  |-  ( ph  ->  Y  e.  P )
tglngval.z  |-  ( ph  ->  X  =/=  Y )
tgellng.z  |-  ( ph  ->  Z  e.  P )
Assertion
Ref Expression
tgellng  |-  ( ph  ->  ( Z  e.  ( X L Y )  <-> 
( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )

Proof of Theorem tgellng
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tglngval.p . . . . 5  |-  P  =  ( Base `  G
)
2 tglngval.l . . . . 5  |-  L  =  (LineG `  G )
3 tglngval.i . . . . 5  |-  I  =  (Itv `  G )
4 tglngval.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
5 tglngval.x . . . . 5  |-  ( ph  ->  X  e.  P )
6 tglngval.y . . . . 5  |-  ( ph  ->  Y  e.  P )
7 tglngval.z . . . . 5  |-  ( ph  ->  X  =/=  Y )
81, 2, 3, 4, 5, 6, 7tglngval 25446 . . . 4  |-  ( ph  ->  ( X L Y )  =  { z  e.  P  |  ( z  e.  ( X I Y )  \/  X  e.  ( z I Y )  \/  Y  e.  ( X I z ) ) } )
98eleq2d 2687 . . 3  |-  ( ph  ->  ( Z  e.  ( X L Y )  <-> 
Z  e.  { z  e.  P  |  ( z  e.  ( X I Y )  \/  X  e.  ( z I Y )  \/  Y  e.  ( X I z ) ) } ) )
10 eleq1 2689 . . . . 5  |-  ( z  =  Z  ->  (
z  e.  ( X I Y )  <->  Z  e.  ( X I Y ) ) )
11 oveq1 6657 . . . . . 6  |-  ( z  =  Z  ->  (
z I Y )  =  ( Z I Y ) )
1211eleq2d 2687 . . . . 5  |-  ( z  =  Z  ->  ( X  e.  ( z
I Y )  <->  X  e.  ( Z I Y ) ) )
13 oveq2 6658 . . . . . 6  |-  ( z  =  Z  ->  ( X I z )  =  ( X I Z ) )
1413eleq2d 2687 . . . . 5  |-  ( z  =  Z  ->  ( Y  e.  ( X I z )  <->  Y  e.  ( X I Z ) ) )
1510, 12, 143orbi123d 1398 . . . 4  |-  ( z  =  Z  ->  (
( z  e.  ( X I Y )  \/  X  e.  ( z I Y )  \/  Y  e.  ( X I z ) )  <->  ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )
1615elrab 3363 . . 3  |-  ( Z  e.  { z  e.  P  |  ( z  e.  ( X I Y )  \/  X  e.  ( z I Y )  \/  Y  e.  ( X I z ) ) }  <->  ( Z  e.  P  /\  ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )
179, 16syl6bb 276 . 2  |-  ( ph  ->  ( Z  e.  ( X L Y )  <-> 
( Z  e.  P  /\  ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) ) )
18 tgellng.z . . 3  |-  ( ph  ->  Z  e.  P )
1918biantrurd 529 . 2  |-  ( ph  ->  ( ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) )  <->  ( Z  e.  P  /\  ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) ) )
2017, 19bitr4d 271 1  |-  ( ph  ->  ( Z  e.  ( X L Y )  <-> 
( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   ` cfv 5888  (class class class)co 6650   Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-trkg 25352
This theorem is referenced by:  tgcolg  25449  hlln  25502  lnhl  25510  btwnlng1  25514  btwnlng2  25515  btwnlng3  25516  lncom  25517  lnrot1  25518  lnrot2  25519  tglineeltr  25526  colmid  25583  cgracol  25719
  Copyright terms: Public domain W3C validator