MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbmpt Structured version   Visualization version   Unicode version

Theorem logbmpt 24526
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.)
Assertion
Ref Expression
logbmpt  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  (curry logb  `  B
)  =  ( y  e.  ( CC  \  { 0 } ) 
|->  ( ( log `  y
)  /  ( log `  B ) ) ) )
Distinct variable group:    y, B

Proof of Theorem logbmpt
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-logb 24503 . . 3  |- logb  =  (
x  e.  ( CC 
\  { 0 ,  1 } ) ,  y  e.  ( CC 
\  { 0 } )  |->  ( ( log `  y )  /  ( log `  x ) ) )
2 ovexd 6680 . . . 4  |-  ( ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  /\  ( x  e.  ( CC  \  {
0 ,  1 } )  /\  y  e.  ( CC  \  {
0 } ) ) )  ->  ( ( log `  y )  / 
( log `  x
) )  e.  _V )
32ralrimivva 2971 . . 3  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  A. x  e.  ( CC  \  {
0 ,  1 } ) A. y  e.  ( CC  \  {
0 } ) ( ( log `  y
)  /  ( log `  x ) )  e. 
_V )
4 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
5 ax-1ne0 10005 . . . . . . 7  |-  1  =/=  0
6 elsng 4191 . . . . . . . 8  |-  ( 1  e.  CC  ->  (
1  e.  { 0 }  <->  1  =  0 ) )
74, 6ax-mp 5 . . . . . . 7  |-  ( 1  e.  { 0 }  <->  1  =  0 )
85, 7nemtbir 2889 . . . . . 6  |-  -.  1  e.  { 0 }
9 eldif 3584 . . . . . 6  |-  ( 1  e.  ( CC  \  { 0 } )  <-> 
( 1  e.  CC  /\ 
-.  1  e.  {
0 } ) )
104, 8, 9mpbir2an 955 . . . . 5  |-  1  e.  ( CC  \  {
0 } )
1110ne0ii 3923 . . . 4  |-  ( CC 
\  { 0 } )  =/=  (/)
1211a1i 11 . . 3  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  ( CC  \  { 0 } )  =/=  (/) )
13 cnex 10017 . . . . 5  |-  CC  e.  _V
14 difexg 4808 . . . . 5  |-  ( CC  e.  _V  ->  ( CC  \  { 0 } )  e.  _V )
1513, 14ax-mp 5 . . . 4  |-  ( CC 
\  { 0 } )  e.  _V
1615a1i 11 . . 3  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  ( CC  \  { 0 } )  e.  _V )
17 eldifpr 4204 . . . 4  |-  ( B  e.  ( CC  \  { 0 ,  1 } )  <->  ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 ) )
1817biimpri 218 . . 3  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  B  e.  ( CC  \  {
0 ,  1 } ) )
191, 3, 12, 16, 18mpt2curryvald 7396 . 2  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  (curry logb  `  B
)  =  ( y  e.  ( CC  \  { 0 } ) 
|->  [_ B  /  x ]_ ( ( log `  y
)  /  ( log `  x ) ) ) )
20 csbov2g 6691 . . . . 5  |-  ( B  e.  CC  ->  [_ B  /  x ]_ ( ( log `  y )  /  ( log `  x
) )  =  ( ( log `  y
)  /  [_ B  /  x ]_ ( log `  x ) ) )
21 csbfv 6233 . . . . . . 7  |-  [_ B  /  x ]_ ( log `  x )  =  ( log `  B )
2221a1i 11 . . . . . 6  |-  ( B  e.  CC  ->  [_ B  /  x ]_ ( log `  x )  =  ( log `  B ) )
2322oveq2d 6666 . . . . 5  |-  ( B  e.  CC  ->  (
( log `  y
)  /  [_ B  /  x ]_ ( log `  x ) )  =  ( ( log `  y
)  /  ( log `  B ) ) )
2420, 23eqtrd 2656 . . . 4  |-  ( B  e.  CC  ->  [_ B  /  x ]_ ( ( log `  y )  /  ( log `  x
) )  =  ( ( log `  y
)  /  ( log `  B ) ) )
25243ad2ant1 1082 . . 3  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  [_ B  /  x ]_ ( ( log `  y )  /  ( log `  x
) )  =  ( ( log `  y
)  /  ( log `  B ) ) )
2625mpteq2dv 4745 . 2  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  (
y  e.  ( CC 
\  { 0 } )  |->  [_ B  /  x ]_ ( ( log `  y
)  /  ( log `  x ) ) )  =  ( y  e.  ( CC  \  {
0 } )  |->  ( ( log `  y
)  /  ( log `  B ) ) ) )
2719, 26eqtrd 2656 1  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 )  ->  (curry logb  `  B
)  =  ( y  e.  ( CC  \  { 0 } ) 
|->  ( ( log `  y
)  /  ( log `  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   [_csb 3533    \ cdif 3571   (/)c0 3915   {csn 4177   {cpr 4179    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650  curry ccur 7391   CCcc 9934   0cc0 9936   1c1 9937    / cdiv 10684   logclog 24301   logb clogb 24502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-1cn 9994  ax-1ne0 10005
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cur 7393  df-logb 24503
This theorem is referenced by:  logbf  24527  relogbf  24529  logblog  24530
  Copyright terms: Public domain W3C validator