MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpival Structured version   Visualization version   Unicode version

Theorem lpival 19245
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p  |-  P  =  (LPIdeal `  R )
lpival.k  |-  K  =  (RSpan `  R )
lpival.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
lpival  |-  ( R  e.  Ring  ->  P  = 
U_ g  e.  B  { ( K `  { g } ) } )
Distinct variable groups:    R, g    P, g    B, g    g, K

Proof of Theorem lpival
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
2 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  (RSpan `  r )  =  (RSpan `  R ) )
32fveq1d 6193 . . . . 5  |-  ( r  =  R  ->  (
(RSpan `  r ) `  { g } )  =  ( (RSpan `  R ) `  {
g } ) )
43sneqd 4189 . . . 4  |-  ( r  =  R  ->  { ( (RSpan `  r ) `  { g } ) }  =  { ( (RSpan `  R ) `  { g } ) } )
51, 4iuneq12d 4546 . . 3  |-  ( r  =  R  ->  U_ g  e.  ( Base `  r
) { ( (RSpan `  r ) `  {
g } ) }  =  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } )
6 df-lpidl 19243 . . 3  |- LPIdeal  =  ( r  e.  Ring  |->  U_ g  e.  ( Base `  r
) { ( (RSpan `  r ) `  {
g } ) } )
7 fvex 6201 . . . . . 6  |-  (RSpan `  R )  e.  _V
87rnex 7100 . . . . 5  |-  ran  (RSpan `  R )  e.  _V
9 p0ex 4853 . . . . 5  |-  { (/) }  e.  _V
108, 9unex 6956 . . . 4  |-  ( ran  (RSpan `  R )  u.  { (/) } )  e. 
_V
11 iunss 4561 . . . . 5  |-  ( U_ g  e.  ( Base `  R ) { ( (RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } )  <->  A. g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } 
C_  ( ran  (RSpan `  R )  u.  { (/)
} ) )
12 fvrn0 6216 . . . . . . 7  |-  ( (RSpan `  R ) `  {
g } )  e.  ( ran  (RSpan `  R )  u.  { (/)
} )
13 snssi 4339 . . . . . . 7  |-  ( ( (RSpan `  R ) `  { g } )  e.  ( ran  (RSpan `  R )  u.  { (/)
} )  ->  { ( (RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } ) )
1412, 13ax-mp 5 . . . . . 6  |-  { ( (RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } )
1514a1i 11 . . . . 5  |-  ( g  e.  ( Base `  R
)  ->  { (
(RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } ) )
1611, 15mprgbir 2927 . . . 4  |-  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } 
C_  ( ran  (RSpan `  R )  u.  { (/)
} )
1710, 16ssexi 4803 . . 3  |-  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) }  e.  _V
185, 6, 17fvmpt 6282 . 2  |-  ( R  e.  Ring  ->  (LPIdeal `  R
)  =  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } )
19 lpival.p . 2  |-  P  =  (LPIdeal `  R )
20 lpival.b . . . 4  |-  B  =  ( Base `  R
)
21 iuneq1 4534 . . . 4  |-  ( B  =  ( Base `  R
)  ->  U_ g  e.  B  { ( K `
 { g } ) }  =  U_ g  e.  ( Base `  R ) { ( K `  { g } ) } )
2220, 21ax-mp 5 . . 3  |-  U_ g  e.  B  { ( K `  { g } ) }  =  U_ g  e.  ( Base `  R ) { ( K `  { g } ) }
23 lpival.k . . . . . . 7  |-  K  =  (RSpan `  R )
2423fveq1i 6192 . . . . . 6  |-  ( K `
 { g } )  =  ( (RSpan `  R ) `  {
g } )
2524sneqi 4188 . . . . 5  |-  { ( K `  { g } ) }  =  { ( (RSpan `  R ) `  {
g } ) }
2625a1i 11 . . . 4  |-  ( g  e.  ( Base `  R
)  ->  { ( K `  { g } ) }  =  { ( (RSpan `  R ) `  {
g } ) } )
2726iuneq2i 4539 . . 3  |-  U_ g  e.  ( Base `  R
) { ( K `
 { g } ) }  =  U_ g  e.  ( Base `  R ) { ( (RSpan `  R ) `  { g } ) }
2822, 27eqtri 2644 . 2  |-  U_ g  e.  B  { ( K `  { g } ) }  =  U_ g  e.  ( Base `  R ) { ( (RSpan `  R ) `  { g } ) }
2918, 19, 283eqtr4g 2681 1  |-  ( R  e.  Ring  ->  P  = 
U_ g  e.  B  { ( K `  { g } ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520   ran crn 5115   ` cfv 5888   Basecbs 15857   Ringcrg 18547  RSpancrsp 19171  LPIdealclpidl 19241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-lpidl 19243
This theorem is referenced by:  islpidl  19246
  Copyright terms: Public domain W3C validator