MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpidl Structured version   Visualization version   Unicode version

Theorem islpidl 19246
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p  |-  P  =  (LPIdeal `  R )
lpival.k  |-  K  =  (RSpan `  R )
lpival.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
islpidl  |-  ( R  e.  Ring  ->  ( I  e.  P  <->  E. g  e.  B  I  =  ( K `  { g } ) ) )
Distinct variable groups:    R, g    P, g    B, g    g, K   
g, I

Proof of Theorem islpidl
StepHypRef Expression
1 lpival.p . . . 4  |-  P  =  (LPIdeal `  R )
2 lpival.k . . . 4  |-  K  =  (RSpan `  R )
3 lpival.b . . . 4  |-  B  =  ( Base `  R
)
41, 2, 3lpival 19245 . . 3  |-  ( R  e.  Ring  ->  P  = 
U_ g  e.  B  { ( K `  { g } ) } )
54eleq2d 2687 . 2  |-  ( R  e.  Ring  ->  ( I  e.  P  <->  I  e.  U_ g  e.  B  {
( K `  {
g } ) } ) )
6 eliun 4524 . . 3  |-  ( I  e.  U_ g  e.  B  { ( K `
 { g } ) }  <->  E. g  e.  B  I  e.  { ( K `  {
g } ) } )
7 fvex 6201 . . . . 5  |-  ( K `
 { g } )  e.  _V
87elsn2 4211 . . . 4  |-  ( I  e.  { ( K `
 { g } ) }  <->  I  =  ( K `  { g } ) )
98rexbii 3041 . . 3  |-  ( E. g  e.  B  I  e.  { ( K `
 { g } ) }  <->  E. g  e.  B  I  =  ( K `  { g } ) )
106, 9bitri 264 . 2  |-  ( I  e.  U_ g  e.  B  { ( K `
 { g } ) }  <->  E. g  e.  B  I  =  ( K `  { g } ) )
115, 10syl6bb 276 1  |-  ( R  e.  Ring  ->  ( I  e.  P  <->  E. g  e.  B  I  =  ( K `  { g } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   E.wrex 2913   {csn 4177   U_ciun 4520   ` cfv 5888   Basecbs 15857   Ringcrg 18547  RSpancrsp 19171  LPIdealclpidl 19241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-lpidl 19243
This theorem is referenced by:  lpi0  19247  lpi1  19248  lpiss  19250  lpigen  19256  ply1lpir  23938  lpirlnr  37687
  Copyright terms: Public domain W3C validator