Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolpolsatN Structured version   Visualization version   Unicode version

Theorem lpolpolsatN 36778
Description: Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolpolsat.a  |-  A  =  (LSAtoms `  W )
lpolpolsat.p  |-  P  =  (LPol `  W )
lpolpolsat.w  |-  ( ph  ->  W  e.  X )
lpolpolsat.o  |-  ( ph  -> 
._|_  e.  P )
lpolpolsat.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
lpolpolsatN  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )

Proof of Theorem lpolpolsatN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolpolsat.o . . 3  |-  ( ph  -> 
._|_  e.  P )
2 lpolpolsat.w . . . 4  |-  ( ph  ->  W  e.  X )
3 eqid 2622 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2622 . . . . 5  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
5 eqid 2622 . . . . 5  |-  ( 0g
`  W )  =  ( 0g `  W
)
6 lpolpolsat.a . . . . 5  |-  A  =  (LSAtoms `  W )
7 eqid 2622 . . . . 5  |-  (LSHyp `  W )  =  (LSHyp `  W )
8 lpolpolsat.p . . . . 5  |-  P  =  (LPol `  W )
93, 4, 5, 6, 7, 8islpolN 36772 . . . 4  |-  ( W  e.  X  ->  (  ._|_  e.  P  <->  (  ._|_  : ~P ( Base `  W
) --> ( LSubSp `  W
)  /\  ( (  ._|_  `  ( Base `  W
) )  =  {
( 0g `  W
) }  /\  A. x A. y ( ( x  C_  ( Base `  W )  /\  y  C_  ( Base `  W
)  /\  x  C_  y
)  ->  (  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) ) ) )
102, 9syl 17 . . 3  |-  ( ph  ->  (  ._|_  e.  P  <->  ( 
._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  (
(  ._|_  `  ( Base `  W ) )  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x  C_  ( Base `  W )  /\  y  C_  ( Base `  W
)  /\  x  C_  y
)  ->  (  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) ) ) )
111, 10mpbid 222 . 2  |-  ( ph  ->  (  ._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  ( (  ._|_  `  ( Base `  W ) )  =  { ( 0g
`  W ) }  /\  A. x A. y ( ( x 
C_  ( Base `  W
)  /\  y  C_  ( Base `  W )  /\  x  C_  y )  ->  (  ._|_  `  y
)  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W
)  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x ) ) ) )
12 simpr3 1069 . . 3  |-  ( ( 
._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  (
(  ._|_  `  ( Base `  W ) )  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x  C_  ( Base `  W )  /\  y  C_  ( Base `  W
)  /\  x  C_  y
)  ->  (  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) )  ->  A. x  e.  A  ( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) )
13 lpolpolsat.q . . . 4  |-  ( ph  ->  Q  e.  A )
14 fveq2 6191 . . . . . . 7  |-  ( x  =  Q  ->  (  ._|_  `  x )  =  (  ._|_  `  Q ) )
1514eleq1d 2686 . . . . . 6  |-  ( x  =  Q  ->  (
(  ._|_  `  x )  e.  (LSHyp `  W )  <->  ( 
._|_  `  Q )  e.  (LSHyp `  W )
) )
1614fveq2d 6195 . . . . . . 7  |-  ( x  =  Q  ->  (  ._|_  `  (  ._|_  `  x
) )  =  ( 
._|_  `  (  ._|_  `  Q
) ) )
17 id 22 . . . . . . 7  |-  ( x  =  Q  ->  x  =  Q )
1816, 17eqeq12d 2637 . . . . . 6  |-  ( x  =  Q  ->  (
(  ._|_  `  (  ._|_  `  x ) )  =  x  <->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q ) )
1915, 18anbi12d 747 . . . . 5  |-  ( x  =  Q  ->  (
( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x )  <->  ( (  ._|_  `  Q )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  Q
) )  =  Q ) ) )
2019rspcv 3305 . . . 4  |-  ( Q  e.  A  ->  ( A. x  e.  A  ( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x )  ->  ( (  ._|_  `  Q )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  Q ) )  =  Q ) ) )
2113, 20syl 17 . . 3  |-  ( ph  ->  ( A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x )  ->  ( (  ._|_  `  Q )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  Q ) )  =  Q ) ) )
22 simpr 477 . . 3  |-  ( ( (  ._|_  `  Q )  e.  (LSHyp `  W
)  /\  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )  ->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )
2312, 21, 22syl56 36 . 2  |-  ( ph  ->  ( (  ._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  ( (  ._|_  `  ( Base `  W ) )  =  { ( 0g
`  W ) }  /\  A. x A. y ( ( x 
C_  ( Base `  W
)  /\  y  C_  ( Base `  W )  /\  x  C_  y )  ->  (  ._|_  `  y
)  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W
)  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x ) ) )  ->  (  ._|_  `  (  ._|_  `  Q
) )  =  Q ) )
2411, 23mpd 15 1  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ~Pcpw 4158   {csn 4177   -->wf 5884   ` cfv 5888   Basecbs 15857   0gc0g 16100   LSubSpclss 18932  LSAtomsclsa 34261  LSHypclsh 34262  LPolclpoN 36769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-lpolN 36770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator