MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmfval Structured version   Visualization version   Unicode version

Theorem lsmfval 18053
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v  |-  B  =  ( Base `  G
)
lsmfval.a  |-  .+  =  ( +g  `  G )
lsmfval.s  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmfval  |-  ( G  e.  V  ->  .(+)  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
Distinct variable groups:    u, t, x, y,  .+    t, B, u, x, y    t, G, u, x, y
Allowed substitution hints:    .(+) ( x, y, u, t)    V( x, y, u, t)

Proof of Theorem lsmfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lsmfval.s . 2  |-  .(+)  =  (
LSSum `  G )
2 elex 3212 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
3 fveq2 6191 . . . . . . 7  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
4 lsmfval.v . . . . . . 7  |-  B  =  ( Base `  G
)
53, 4syl6eqr 2674 . . . . . 6  |-  ( w  =  G  ->  ( Base `  w )  =  B )
65pweqd 4163 . . . . 5  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P B )
7 fveq2 6191 . . . . . . . . 9  |-  ( w  =  G  ->  ( +g  `  w )  =  ( +g  `  G
) )
8 lsmfval.a . . . . . . . . 9  |-  .+  =  ( +g  `  G )
97, 8syl6eqr 2674 . . . . . . . 8  |-  ( w  =  G  ->  ( +g  `  w )  = 
.+  )
109oveqd 6667 . . . . . . 7  |-  ( w  =  G  ->  (
x ( +g  `  w
) y )  =  ( x  .+  y
) )
1110mpt2eq3dv 6721 . . . . . 6  |-  ( w  =  G  ->  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w
) y ) )  =  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) )
1211rneqd 5353 . . . . 5  |-  ( w  =  G  ->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w ) y ) )  =  ran  (
x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) )
136, 6, 12mpt2eq123dv 6717 . . . 4  |-  ( w  =  G  ->  (
t  e.  ~P ( Base `  w ) ,  u  e.  ~P ( Base `  w )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w ) y ) ) )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
14 df-lsm 18051 . . . 4  |-  LSSum  =  ( w  e.  _V  |->  ( t  e.  ~P ( Base `  w ) ,  u  e.  ~P ( Base `  w )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w ) y ) ) ) )
15 fvex 6201 . . . . . . 7  |-  ( Base `  G )  e.  _V
164, 15eqeltri 2697 . . . . . 6  |-  B  e. 
_V
1716pwex 4848 . . . . 5  |-  ~P B  e.  _V
1817, 17mpt2ex 7247 . . . 4  |-  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) )  e.  _V
1913, 14, 18fvmpt 6282 . . 3  |-  ( G  e.  _V  ->  ( LSSum `  G )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
202, 19syl 17 . 2  |-  ( G  e.  V  ->  ( LSSum `  G )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
211, 20syl5eq 2668 1  |-  ( G  e.  V  ->  .(+)  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   ~Pcpw 4158   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941   LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lsm 18051
This theorem is referenced by:  lsmvalx  18054  oppglsm  18057  lsmpropd  18090
  Copyright terms: Public domain W3C validator