| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppglsm | Structured version Visualization version Unicode version | ||
| Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| oppglsm.o |
|
| oppglsm.p |
|
| Ref | Expression |
|---|---|
| oppglsm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . . . . 8
| |
| 2 | eqid 2622 |
. . . . . . . 8
| |
| 3 | oppglsm.p |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | lsmfval 18053 |
. . . . . . 7
|
| 5 | 4 | tposeqd 7355 |
. . . . . 6
|
| 6 | eqid 2622 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | reldmmpt2 6771 |
. . . . . . . . . . . 12
|
| 8 | 6 | mpt2fun 6762 |
. . . . . . . . . . . . 13
|
| 9 | funforn 6122 |
. . . . . . . . . . . . 13
| |
| 10 | 8, 9 | mpbi 220 |
. . . . . . . . . . . 12
|
| 11 | tposfo2 7375 |
. . . . . . . . . . . 12
| |
| 12 | 7, 10, 11 | mp2 9 |
. . . . . . . . . . 11
|
| 13 | forn 6118 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . . 10
|
| 15 | oppglsm.o |
. . . . . . . . . . . . . . . 16
| |
| 16 | eqid 2622 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 2, 15, 16 | oppgplus 17779 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | eqcomi 2631 |
. . . . . . . . . . . . . 14
|
| 19 | 18 | a1i 11 |
. . . . . . . . . . . . 13
|
| 20 | 19 | mpt2eq3ia 6720 |
. . . . . . . . . . . 12
|
| 21 | 20 | tposmpt2 7389 |
. . . . . . . . . . 11
|
| 22 | 21 | rneqi 5352 |
. . . . . . . . . 10
|
| 23 | 14, 22 | eqtr3i 2646 |
. . . . . . . . 9
|
| 24 | 23 | a1i 11 |
. . . . . . . 8
|
| 25 | 24 | mpt2eq3ia 6720 |
. . . . . . 7
|
| 26 | 25 | tposmpt2 7389 |
. . . . . 6
|
| 27 | 5, 26 | syl6eq 2672 |
. . . . 5
|
| 28 | fvex 6201 |
. . . . . . 7
| |
| 29 | 15, 28 | eqeltri 2697 |
. . . . . 6
|
| 30 | 15, 1 | oppgbas 17781 |
. . . . . . 7
|
| 31 | eqid 2622 |
. . . . . . 7
| |
| 32 | 30, 16, 31 | lsmfval 18053 |
. . . . . 6
|
| 33 | 29, 32 | ax-mp 5 |
. . . . 5
|
| 34 | 27, 33 | syl6reqr 2675 |
. . . 4
|
| 35 | 34 | oveqd 6667 |
. . 3
|
| 36 | ovtpos 7367 |
. . 3
| |
| 37 | 35, 36 | syl6eq 2672 |
. 2
|
| 38 | eqid 2622 |
. . . . . . 7
| |
| 39 | 0ex 4790 |
. . . . . . 7
| |
| 40 | eqidd 2623 |
. . . . . . 7
| |
| 41 | 38, 39, 40 | elovmpt2 6879 |
. . . . . 6
|
| 42 | 41 | simp3bi 1078 |
. . . . 5
|
| 43 | 42 | ssriv 3607 |
. . . 4
|
| 44 | ss0 3974 |
. . . 4
| |
| 45 | 43, 44 | ax-mp 5 |
. . 3
|
| 46 | elpwi 4168 |
. . . . . . . . . . . . 13
| |
| 47 | 46 | 3ad2ant2 1083 |
. . . . . . . . . . . 12
|
| 48 | fvprc 6185 |
. . . . . . . . . . . . 13
| |
| 49 | 48 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
|
| 50 | 47, 49 | sseqtrd 3641 |
. . . . . . . . . . 11
|
| 51 | ss0 3974 |
. . . . . . . . . . 11
| |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . 10
|
| 53 | eqid 2622 |
. . . . . . . . . 10
| |
| 54 | mpt2eq12 6715 |
. . . . . . . . . 10
| |
| 55 | 52, 53, 54 | sylancl 694 |
. . . . . . . . 9
|
| 56 | mpt20 6725 |
. . . . . . . . 9
| |
| 57 | 55, 56 | syl6eq 2672 |
. . . . . . . 8
|
| 58 | 57 | rneqd 5353 |
. . . . . . 7
|
| 59 | rn0 5377 |
. . . . . . 7
| |
| 60 | 58, 59 | syl6eq 2672 |
. . . . . 6
|
| 61 | 60 | mpt2eq3dva 6719 |
. . . . 5
|
| 62 | 33, 61 | syl5eq 2668 |
. . . 4
|
| 63 | 62 | oveqd 6667 |
. . 3
|
| 64 | fvprc 6185 |
. . . . . 6
| |
| 65 | 3, 64 | syl5eq 2668 |
. . . . 5
|
| 66 | 65 | oveqd 6667 |
. . . 4
|
| 67 | 0ov 6682 |
. . . 4
| |
| 68 | 66, 67 | syl6eq 2672 |
. . 3
|
| 69 | 45, 63, 68 | 3eqtr4a 2682 |
. 2
|
| 70 | 37, 69 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-oppg 17776 df-lsm 18051 |
| This theorem is referenced by: lsmmod2 18089 lsmdisj2r 18098 |
| Copyright terms: Public domain | W3C validator |