MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfval Structured version   Visualization version   Unicode version

Theorem lspfval 18973
Description: The span function for a left vector space (or a left module). (df-span 28168 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspfval  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Distinct variable groups:    t, s, S    V, s, t    W, s
Allowed substitution hints:    N( t, s)    W( t)    X( t, s)

Proof of Theorem lspfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2  |-  N  =  ( LSpan `  W )
2 elex 3212 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
3 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lspval.v . . . . . . 7  |-  V  =  ( Base `  W
)
53, 4syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 4163 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 lspval.s . . . . . . . 8  |-  S  =  ( LSubSp `  W )
97, 8syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
10 rabeq 3192 . . . . . . 7  |-  ( (
LSubSp `  w )  =  S  ->  { t  e.  ( LSubSp `  w )  |  s  C_  t }  =  { t  e.  S  |  s  C_  t } )
119, 10syl 17 . . . . . 6  |-  ( w  =  W  ->  { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  {
t  e.  S  | 
s  C_  t }
)
1211inteqd 4480 . . . . 5  |-  ( w  =  W  ->  |^| { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  |^| { t  e.  S  | 
s  C_  t }
)
136, 12mpteq12dv 4733 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
)  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) )
14 df-lsp 18972 . . . 4  |-  LSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
) )
15 fvex 6201 . . . . . . 7  |-  ( Base `  W )  e.  _V
164, 15eqeltri 2697 . . . . . 6  |-  V  e. 
_V
1716pwex 4848 . . . . 5  |-  ~P V  e.  _V
1817mptex 6486 . . . 4  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  e.  _V
1913, 14, 18fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
202, 19syl 17 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
211, 20syl5eq 2668 1  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   |^|cint 4475    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   LSubSpclss 18932   LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-lsp 18972
This theorem is referenced by:  lspf  18974  lspval  18975  00lsp  18981  mrclsp  18989  lsppropd  19018
  Copyright terms: Public domain W3C validator