MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lsp Structured version   Visualization version   Unicode version

Theorem 00lsp 18981
Description: fvco4i 6276 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
00lsp  |-  (/)  =  (
LSpan `  (/) )

Proof of Theorem 00lsp
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . 3  |-  (/)  e.  _V
2 base0 15912 . . . 4  |-  (/)  =  (
Base `  (/) )
3 00lss 18942 . . . 4  |-  (/)  =  (
LSubSp `  (/) )
4 eqid 2622 . . . 4  |-  ( LSpan `  (/) )  =  ( LSpan `  (/) )
52, 3, 4lspfval 18973 . . 3  |-  ( (/)  e.  _V  ->  ( LSpan `  (/) )  =  (
a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } ) )
61, 5ax-mp 5 . 2  |-  ( LSpan `  (/) )  =  (
a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )
7 eqid 2622 . . . . 5  |-  ( a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )  =  ( a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )
87dmmpt 5630 . . . 4  |-  dom  (
a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )  =  {
a  e.  ~P (/)  |  |^| { b  e.  (/)  |  a 
C_  b }  e.  _V }
9 vprc 4796 . . . . . . 7  |-  -.  _V  e.  _V
10 rab0 3955 . . . . . . . . . 10  |-  { b  e.  (/)  |  a  C_  b }  =  (/)
1110inteqi 4479 . . . . . . . . 9  |-  |^| { b  e.  (/)  |  a  C_  b }  =  |^| (/)
12 int0 4490 . . . . . . . . 9  |-  |^| (/)  =  _V
1311, 12eqtri 2644 . . . . . . . 8  |-  |^| { b  e.  (/)  |  a  C_  b }  =  _V
1413eleq1i 2692 . . . . . . 7  |-  ( |^| { b  e.  (/)  |  a 
C_  b }  e.  _V 
<->  _V  e.  _V )
159, 14mtbir 313 . . . . . 6  |-  -.  |^| { b  e.  (/)  |  a 
C_  b }  e.  _V
1615rgenw 2924 . . . . 5  |-  A. a  e.  ~P  (/)  -.  |^| { b  e.  (/)  |  a  C_  b }  e.  _V
17 rabeq0 3957 . . . . 5  |-  ( { a  e.  ~P (/)  |  |^| { b  e.  (/)  |  a 
C_  b }  e.  _V }  =  (/)  <->  A. a  e.  ~P  (/)  -.  |^| { b  e.  (/)  |  a  C_  b }  e.  _V )
1816, 17mpbir 221 . . . 4  |-  { a  e.  ~P (/)  |  |^| { b  e.  (/)  |  a 
C_  b }  e.  _V }  =  (/)
198, 18eqtri 2644 . . 3  |-  dom  (
a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )  =  (/)
20 funmpt 5926 . . . . 5  |-  Fun  (
a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )
21 funrel 5905 . . . . 5  |-  ( Fun  ( a  e.  ~P (/)  |-> 
|^| { b  e.  (/)  |  a  C_  b }
)  ->  Rel  ( a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } ) )
2220, 21ax-mp 5 . . . 4  |-  Rel  (
a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )
23 reldm0 5343 . . . 4  |-  ( Rel  ( a  e.  ~P (/)  |-> 
|^| { b  e.  (/)  |  a  C_  b }
)  ->  ( (
a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )  =  (/)  <->  dom  ( a  e.  ~P (/)  |-> 
|^| { b  e.  (/)  |  a  C_  b }
)  =  (/) ) )
2422, 23ax-mp 5 . . 3  |-  ( ( a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )  =  (/)  <->  dom  ( a  e.  ~P (/)  |-> 
|^| { b  e.  (/)  |  a  C_  b }
)  =  (/) )
2519, 24mpbir 221 . 2  |-  ( a  e.  ~P (/)  |->  |^| { b  e.  (/)  |  a  C_  b } )  =  (/)
266, 25eqtr2i 2645 1  |-  (/)  =  (
LSpan `  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475    |-> cmpt 4729   dom cdm 5114   Rel wrel 5119   Fun wfun 5882   ` cfv 5888   LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-slot 15861  df-base 15863  df-lss 18933  df-lsp 18972
This theorem is referenced by:  rspval  19193
  Copyright terms: Public domain W3C validator