MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublecl Structured version   Visualization version   Unicode version

Theorem lublecl 16989
Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.)
Hypotheses
Ref Expression
lublecl.b  |-  B  =  ( Base `  K
)
lublecl.l  |-  .<_  =  ( le `  K )
lublecl.u  |-  U  =  ( lub `  K
)
lublecl.k  |-  ( ph  ->  K  e.  Poset )
lublecl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
lublecl  |-  ( ph  ->  { y  e.  B  |  y  .<_  X }  e.  dom  U )
Distinct variable groups:    y,  .<_    y, B    y, X
Allowed substitution hints:    ph( y)    U( y)    K( y)

Proof of Theorem lublecl
Dummy variables  x  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . 3  |-  { y  e.  B  |  y 
.<_  X }  C_  B
21a1i 11 . 2  |-  ( ph  ->  { y  e.  B  |  y  .<_  X }  C_  B )
3 lublecl.x . . 3  |-  ( ph  ->  X  e.  B )
4 lublecl.b . . . . 5  |-  B  =  ( Base `  K
)
5 lublecl.l . . . . 5  |-  .<_  =  ( le `  K )
6 lublecl.u . . . . 5  |-  U  =  ( lub `  K
)
7 lublecl.k . . . . 5  |-  ( ph  ->  K  e.  Poset )
84, 5, 6, 7, 3lublecllem 16988 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. z  e. 
{ y  e.  B  |  y  .<_  X }
z  .<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  w  ->  x  .<_  w ) )  <->  x  =  X
) )
98ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  B  ( ( A. z  e.  { y  e.  B  |  y  .<_  X }
z  .<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  w  ->  x  .<_  w ) )  <->  x  =  X
) )
10 reu6i 3397 . . 3  |-  ( ( X  e.  B  /\  A. x  e.  B  ( ( A. z  e. 
{ y  e.  B  |  y  .<_  X }
z  .<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  w  ->  x  .<_  w ) )  <->  x  =  X
) )  ->  E! x  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y  .<_  X }
z  .<_  w  ->  x  .<_  w ) ) )
113, 9, 10syl2anc 693 . 2  |-  ( ph  ->  E! x  e.  B  ( A. z  e.  {
y  e.  B  | 
y  .<_  X } z 
.<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y  .<_  X } z  .<_  w  ->  x  .<_  w ) ) )
12 biid 251 . . 3  |-  ( ( A. z  e.  {
y  e.  B  | 
y  .<_  X } z 
.<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y  .<_  X } z  .<_  w  ->  x  .<_  w ) )  <->  ( A. z  e.  { y  e.  B  |  y  .<_  X }
z  .<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  w  ->  x  .<_  w ) ) )
134, 5, 6, 12, 7lubeldm 16981 . 2  |-  ( ph  ->  ( { y  e.  B  |  y  .<_  X }  e.  dom  U  <-> 
( { y  e.  B  |  y  .<_  X }  C_  B  /\  E! x  e.  B  ( A. z  e.  {
y  e.  B  | 
y  .<_  X } z 
.<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y  .<_  X } z  .<_  w  ->  x  .<_  w ) ) ) ) )
142, 11, 13mpbir2and 957 1  |-  ( ph  ->  { y  e.  B  |  y  .<_  X }  e.  dom  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   {crab 2916    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940   lubclub 16942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-preset 16928  df-poset 16946  df-lub 16974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator