MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublem Structured version   Visualization version   Unicode version

Theorem lublem 17118
Description: Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
lublem.b  |-  B  =  ( Base `  K
)
lublem.l  |-  .<_  =  ( le `  K )
lublem.u  |-  U  =  ( lub `  K
)
Assertion
Ref Expression
lublem  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( A. y  e.  S  y  .<_  ( U `  S )  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) ) )
Distinct variable groups:    z, B    y, z, K    y, S, z    y, U, z    y,  .<_ , z
Allowed substitution hint:    B( y)

Proof of Theorem lublem
StepHypRef Expression
1 lublem.b . 2  |-  B  =  ( Base `  K
)
2 lublem.l . 2  |-  .<_  =  ( le `  K )
3 lublem.u . 2  |-  U  =  ( lub `  K
)
4 simpl 473 . 2  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  K  e.  CLat )
51, 3clatlubcl2 17113 . 2  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  S  e.  dom  U )
61, 2, 3, 4, 5lubprop 16986 1  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( A. y  e.  S  y  .<_  ( U `  S )  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   lubclub 16942   CLatccla 17107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-lub 16974  df-clat 17108
This theorem is referenced by:  lubub  17119  lubl  17120
  Copyright terms: Public domain W3C validator