MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem2 Structured version   Visualization version   Unicode version

Theorem marypha2lem2 8342
Description: Lemma for marypha2 8345. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
Assertion
Ref Expression
marypha2lem2  |-  T  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
Distinct variable groups:    x, A, y    x, F, y
Allowed substitution hints:    T( x, y)

Proof of Theorem marypha2lem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . 2  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
2 sneq 4187 . . . 4  |-  ( x  =  z  ->  { x }  =  { z } )
3 fveq2 6191 . . . 4  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
42, 3xpeq12d 5140 . . 3  |-  ( x  =  z  ->  ( { x }  X.  ( F `  x ) )  =  ( { z }  X.  ( F `  z )
) )
54cbviunv 4559 . 2  |-  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  =  U_ z  e.  A  ( {
z }  X.  ( F `  z )
)
6 df-xp 5120 . . . . 5  |-  ( { z }  X.  ( F `  z )
)  =  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) }
76a1i 11 . . . 4  |-  ( z  e.  A  ->  ( { z }  X.  ( F `  z ) )  =  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) } )
87iuneq2i 4539 . . 3  |-  U_ z  e.  A  ( {
z }  X.  ( F `  z )
)  =  U_ z  e.  A  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) }
9 iunopab 5012 . . 3  |-  U_ z  e.  A  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) }  =  { <. x ,  y
>.  |  E. z  e.  A  ( x  e.  { z }  /\  y  e.  ( F `  z ) ) }
10 velsn 4193 . . . . . . . 8  |-  ( x  e.  { z }  <-> 
x  =  z )
11 equcom 1945 . . . . . . . 8  |-  ( x  =  z  <->  z  =  x )
1210, 11bitri 264 . . . . . . 7  |-  ( x  e.  { z }  <-> 
z  =  x )
1312anbi1i 731 . . . . . 6  |-  ( ( x  e.  { z }  /\  y  e.  ( F `  z
) )  <->  ( z  =  x  /\  y  e.  ( F `  z
) ) )
1413rexbii 3041 . . . . 5  |-  ( E. z  e.  A  ( x  e.  { z }  /\  y  e.  ( F `  z
) )  <->  E. z  e.  A  ( z  =  x  /\  y  e.  ( F `  z
) ) )
15 fveq2 6191 . . . . . . 7  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
1615eleq2d 2687 . . . . . 6  |-  ( z  =  x  ->  (
y  e.  ( F `
 z )  <->  y  e.  ( F `  x ) ) )
1716ceqsrexbv 3337 . . . . 5  |-  ( E. z  e.  A  ( z  =  x  /\  y  e.  ( F `  z ) )  <->  ( x  e.  A  /\  y  e.  ( F `  x
) ) )
1814, 17bitri 264 . . . 4  |-  ( E. z  e.  A  ( x  e.  { z }  /\  y  e.  ( F `  z
) )  <->  ( x  e.  A  /\  y  e.  ( F `  x
) ) )
1918opabbii 4717 . . 3  |-  { <. x ,  y >.  |  E. z  e.  A  (
x  e.  { z }  /\  y  e.  ( F `  z
) ) }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
208, 9, 193eqtri 2648 . 2  |-  U_ z  e.  A  ( {
z }  X.  ( F `  z )
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }
211, 5, 203eqtri 2648 1  |-  T  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {csn 4177   U_ciun 4520   {copab 4712    X. cxp 5112   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896
This theorem is referenced by:  marypha2lem3  8343  marypha2lem4  8344  eulerpartlemgu  30439
  Copyright terms: Public domain W3C validator