MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2 Structured version   Visualization version   Unicode version

Theorem marypha2 8345
Description: Version of marypha1 8340 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha2.a  |-  ( ph  ->  A  e.  Fin )
marypha2.b  |-  ( ph  ->  F : A --> Fin )
marypha2.c  |-  ( (
ph  /\  d  C_  A )  ->  d  ~<_  U. ( F " d
) )
Assertion
Ref Expression
marypha2  |-  ( ph  ->  E. g ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
Distinct variable groups:    ph, d, g, x    A, d, g, x    F, d, g, x

Proof of Theorem marypha2
StepHypRef Expression
1 marypha2.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 marypha2.b . . . 4  |-  ( ph  ->  F : A --> Fin )
32, 1unirnffid 8258 . . 3  |-  ( ph  ->  U. ran  F  e. 
Fin )
4 eqid 2622 . . . . 5  |-  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  =  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)
54marypha2lem1 8341 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  C_  ( A  X.  U. ran  F )
65a1i 11 . . 3  |-  ( ph  ->  U_ x  e.  A  ( { x }  X.  ( F `  x ) )  C_  ( A  X.  U. ran  F ) )
7 marypha2.c . . . 4  |-  ( (
ph  /\  d  C_  A )  ->  d  ~<_  U. ( F " d
) )
8 ffn 6045 . . . . . 6  |-  ( F : A --> Fin  ->  F  Fn  A )
92, 8syl 17 . . . . 5  |-  ( ph  ->  F  Fn  A )
104marypha2lem4 8344 . . . . 5  |-  ( ( F  Fn  A  /\  d  C_  A )  -> 
( U_ x  e.  A  ( { x }  X.  ( F `  x ) ) " d )  =  U. ( F
" d ) )
119, 10sylan 488 . . . 4  |-  ( (
ph  /\  d  C_  A )  ->  ( U_ x  e.  A  ( { x }  X.  ( F `  x ) ) " d )  =  U. ( F
" d ) )
127, 11breqtrrd 4681 . . 3  |-  ( (
ph  /\  d  C_  A )  ->  d  ~<_  ( U_ x  e.  A  ( { x }  X.  ( F `  x ) ) " d ) )
131, 3, 6, 12marypha1 8340 . 2  |-  ( ph  ->  E. g  e.  ~P  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) g : A -1-1-> U.
ran  F )
14 df-rex 2918 . . 3  |-  ( E. g  e.  ~P  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) g : A -1-1-> U.
ran  F  <->  E. g ( g  e.  ~P U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  /\  g : A -1-1-> U. ran  F ) )
15 ssv 3625 . . . . . . . 8  |-  U. ran  F 
C_  _V
16 f1ss 6106 . . . . . . . 8  |-  ( ( g : A -1-1-> U. ran  F  /\  U. ran  F 
C_  _V )  ->  g : A -1-1-> _V )
1715, 16mpan2 707 . . . . . . 7  |-  ( g : A -1-1-> U. ran  F  ->  g : A -1-1-> _V )
1817ad2antll 765 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  g : A -1-1-> _V )
19 elpwi 4168 . . . . . . . 8  |-  ( g  e.  ~P U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  ->  g  C_  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) )
2019ad2antrl 764 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  g  C_ 
U_ x  e.  A  ( { x }  X.  ( F `  x ) ) )
219adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  F  Fn  A )
22 f1fn 6102 . . . . . . . . 9  |-  ( g : A -1-1-> U. ran  F  ->  g  Fn  A
)
2322ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  g  Fn  A )
244marypha2lem3 8343 . . . . . . . 8  |-  ( ( F  Fn  A  /\  g  Fn  A )  ->  ( g  C_  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  <->  A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) ) )
2521, 23, 24syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  (
g  C_  U_ x  e.  A  ( { x }  X.  ( F `  x ) )  <->  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
2620, 25mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  A. x  e.  A  ( g `  x )  e.  ( F `  x ) )
2718, 26jca 554 . . . . 5  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  (
g : A -1-1-> _V  /\ 
A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) ) )
2827ex 450 . . . 4  |-  ( ph  ->  ( ( g  e. 
~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F )  ->  ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) ) )
2928eximdv 1846 . . 3  |-  ( ph  ->  ( E. g ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F )  ->  E. g ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) ) )
3014, 29syl5bi 232 . 2  |-  ( ph  ->  ( E. g  e. 
~P  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) g : A -1-1-> U.
ran  F  ->  E. g
( g : A -1-1-> _V 
/\  A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) ) ) )
3113, 30mpd 15 1  |-  ( ph  ->  E. g ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520   class class class wbr 4653    X. cxp 5112   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888    ~<_ cdom 7953   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator