MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamulid Structured version   Visualization version   Unicode version

Theorem mamulid 20247
Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b  |-  B  =  ( Base `  R
)
mamumat1cl.r  |-  ( ph  ->  R  e.  Ring )
mamumat1cl.o  |-  .1.  =  ( 1r `  R )
mamumat1cl.z  |-  .0.  =  ( 0g `  R )
mamumat1cl.i  |-  I  =  ( i  e.  M ,  j  e.  M  |->  if ( i  =  j ,  .1.  ,  .0.  ) )
mamumat1cl.m  |-  ( ph  ->  M  e.  Fin )
mamulid.n  |-  ( ph  ->  N  e.  Fin )
mamulid.f  |-  F  =  ( R maMul  <. M ,  M ,  N >. )
mamulid.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
Assertion
Ref Expression
mamulid  |-  ( ph  ->  ( I F X )  =  X )
Distinct variable groups:    i, j, B    i, M, j    ph, i,
j    .0. , i, j    .1. , i, j
Allowed substitution hints:    R( i, j)    F( i, j)    I( i, j)    N( i, j)    X( i, j)

Proof of Theorem mamulid
Dummy variables  k 
l  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamulid.f . . . . 5  |-  F  =  ( R maMul  <. M ,  M ,  N >. )
2 mamumat1cl.b . . . . 5  |-  B  =  ( Base `  R
)
3 eqid 2622 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
4 mamumat1cl.r . . . . . 6  |-  ( ph  ->  R  e.  Ring )
54adantr 481 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  ->  R  e.  Ring )
6 mamumat1cl.m . . . . . 6  |-  ( ph  ->  M  e.  Fin )
76adantr 481 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  ->  M  e.  Fin )
8 mamulid.n . . . . . 6  |-  ( ph  ->  N  e.  Fin )
98adantr 481 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  ->  N  e.  Fin )
10 mamumat1cl.o . . . . . . 7  |-  .1.  =  ( 1r `  R )
11 mamumat1cl.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
12 mamumat1cl.i . . . . . . 7  |-  I  =  ( i  e.  M ,  j  e.  M  |->  if ( i  =  j ,  .1.  ,  .0.  ) )
132, 4, 10, 11, 12, 6mamumat1cl 20245 . . . . . 6  |-  ( ph  ->  I  e.  ( B  ^m  ( M  X.  M ) ) )
1413adantr 481 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  ->  I  e.  ( B  ^m  ( M  X.  M
) ) )
15 mamulid.x . . . . . 6  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
1615adantr 481 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  ->  X  e.  ( B  ^m  ( M  X.  N
) ) )
17 simprl 794 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
l  e.  M )
18 simprr 796 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
k  e.  N )
191, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18mamufv 20193 . . . 4  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( l ( I F X ) k )  =  ( R 
gsumg  ( m  e.  M  |->  ( ( l I m ) ( .r
`  R ) ( m X k ) ) ) ) )
20 ringmnd 18556 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
215, 20syl 17 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  ->  R  e.  Mnd )
224ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  R  e.  Ring )
23 elmapi 7879 . . . . . . . . . 10  |-  ( I  e.  ( B  ^m  ( M  X.  M
) )  ->  I : ( M  X.  M ) --> B )
2413, 23syl 17 . . . . . . . . 9  |-  ( ph  ->  I : ( M  X.  M ) --> B )
2524ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  I : ( M  X.  M ) --> B )
26 simplrl 800 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  l  e.  M )
27 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  m  e.  M )
2825, 26, 27fovrnd 6806 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  (
l I m )  e.  B )
29 elmapi 7879 . . . . . . . . . 10  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  ->  X : ( M  X.  N ) --> B )
3015, 29syl 17 . . . . . . . . 9  |-  ( ph  ->  X : ( M  X.  N ) --> B )
3130ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  X : ( M  X.  N ) --> B )
32 simplrr 801 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  k  e.  N )
3331, 27, 32fovrnd 6806 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  (
m X k )  e.  B )
342, 3ringcl 18561 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
l I m )  e.  B  /\  (
m X k )  e.  B )  -> 
( ( l I m ) ( .r
`  R ) ( m X k ) )  e.  B )
3522, 28, 33, 34syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  (
( l I m ) ( .r `  R ) ( m X k ) )  e.  B )
36 eqid 2622 . . . . . 6  |-  ( m  e.  M  |->  ( ( l I m ) ( .r `  R
) ( m X k ) ) )  =  ( m  e.  M  |->  ( ( l I m ) ( .r `  R ) ( m X k ) ) )
3735, 36fmptd 6385 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( m  e.  M  |->  ( ( l I m ) ( .r
`  R ) ( m X k ) ) ) : M --> B )
38263adant3 1081 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  l  e.  M )
39 simp2 1062 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  m  e.  M )
402, 4, 10, 11, 12, 6mat1comp 20246 . . . . . . . . . . 11  |-  ( ( l  e.  M  /\  m  e.  M )  ->  ( l I m )  =  if ( l  =  m ,  .1.  ,  .0.  )
)
41 equcom 1945 . . . . . . . . . . . . 13  |-  ( l  =  m  <->  m  =  l )
4241a1i 11 . . . . . . . . . . . 12  |-  ( ( l  e.  M  /\  m  e.  M )  ->  ( l  =  m  <-> 
m  =  l ) )
4342ifbid 4108 . . . . . . . . . . 11  |-  ( ( l  e.  M  /\  m  e.  M )  ->  if ( l  =  m ,  .1.  ,  .0.  )  =  if ( m  =  l ,  .1.  ,  .0.  )
)
4440, 43eqtrd 2656 . . . . . . . . . 10  |-  ( ( l  e.  M  /\  m  e.  M )  ->  ( l I m )  =  if ( m  =  l ,  .1.  ,  .0.  )
)
4538, 39, 44syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  ( l
I m )  =  if ( m  =  l ,  .1.  ,  .0.  ) )
46 ifnefalse 4098 . . . . . . . . . 10  |-  ( m  =/=  l  ->  if ( m  =  l ,  .1.  ,  .0.  )  =  .0.  )
47463ad2ant3 1084 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  if (
m  =  l ,  .1.  ,  .0.  )  =  .0.  )
4845, 47eqtrd 2656 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  ( l
I m )  =  .0.  )
4948oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  ( (
l I m ) ( .r `  R
) ( m X k ) )  =  (  .0.  ( .r
`  R ) ( m X k ) ) )
502, 3, 11ringlz 18587 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
m X k )  e.  B )  -> 
(  .0.  ( .r
`  R ) ( m X k ) )  =  .0.  )
5122, 33, 50syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M )  ->  (  .0.  ( .r `  R
) ( m X k ) )  =  .0.  )
52513adant3 1081 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  (  .0.  ( .r `  R ) ( m X k ) )  =  .0.  )
5349, 52eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  (
l  e.  M  /\  k  e.  N )
)  /\  m  e.  M  /\  m  =/=  l
)  ->  ( (
l I m ) ( .r `  R
) ( m X k ) )  =  .0.  )
5453, 7suppsssn 7330 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( ( m  e.  M  |->  ( ( l I m ) ( .r `  R ) ( m X k ) ) ) supp  .0.  )  C_  { l } )
552, 11, 21, 7, 17, 37, 54gsumpt 18361 . . . 4  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( R  gsumg  ( m  e.  M  |->  ( ( l I m ) ( .r
`  R ) ( m X k ) ) ) )  =  ( ( m  e.  M  |->  ( ( l I m ) ( .r `  R ) ( m X k ) ) ) `  l ) )
56 oveq2 6658 . . . . . . . 8  |-  ( m  =  l  ->  (
l I m )  =  ( l I l ) )
57 oveq1 6657 . . . . . . . 8  |-  ( m  =  l  ->  (
m X k )  =  ( l X k ) )
5856, 57oveq12d 6668 . . . . . . 7  |-  ( m  =  l  ->  (
( l I m ) ( .r `  R ) ( m X k ) )  =  ( ( l I l ) ( .r `  R ) ( l X k ) ) )
59 ovex 6678 . . . . . . 7  |-  ( ( l I l ) ( .r `  R
) ( l X k ) )  e. 
_V
6058, 36, 59fvmpt 6282 . . . . . 6  |-  ( l  e.  M  ->  (
( m  e.  M  |->  ( ( l I m ) ( .r
`  R ) ( m X k ) ) ) `  l
)  =  ( ( l I l ) ( .r `  R
) ( l X k ) ) )
6160ad2antrl 764 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( ( m  e.  M  |->  ( ( l I m ) ( .r `  R ) ( m X k ) ) ) `  l )  =  ( ( l I l ) ( .r `  R ) ( l X k ) ) )
62 equequ1 1952 . . . . . . . . . 10  |-  ( i  =  l  ->  (
i  =  j  <->  l  =  j ) )
6362ifbid 4108 . . . . . . . . 9  |-  ( i  =  l  ->  if ( i  =  j ,  .1.  ,  .0.  )  =  if (
l  =  j ,  .1.  ,  .0.  )
)
64 equequ2 1953 . . . . . . . . . . 11  |-  ( j  =  l  ->  (
l  =  j  <->  l  =  l ) )
6564ifbid 4108 . . . . . . . . . 10  |-  ( j  =  l  ->  if ( l  =  j ,  .1.  ,  .0.  )  =  if (
l  =  l ,  .1.  ,  .0.  )
)
66 equid 1939 . . . . . . . . . . 11  |-  l  =  l
6766iftruei 4093 . . . . . . . . . 10  |-  if ( l  =  l ,  .1.  ,  .0.  )  =  .1.
6865, 67syl6eq 2672 . . . . . . . . 9  |-  ( j  =  l  ->  if ( l  =  j ,  .1.  ,  .0.  )  =  .1.  )
69 fvex 6201 . . . . . . . . . 10  |-  ( 1r
`  R )  e. 
_V
7010, 69eqeltri 2697 . . . . . . . . 9  |-  .1.  e.  _V
7163, 68, 12, 70ovmpt2 6796 . . . . . . . 8  |-  ( ( l  e.  M  /\  l  e.  M )  ->  ( l I l )  =  .1.  )
7271anidms 677 . . . . . . 7  |-  ( l  e.  M  ->  (
l I l )  =  .1.  )
7372ad2antrl 764 . . . . . 6  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( l I l )  =  .1.  )
7473oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( ( l I l ) ( .r
`  R ) ( l X k ) )  =  (  .1.  ( .r `  R
) ( l X k ) ) )
7530fovrnda 6805 . . . . . 6  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( l X k )  e.  B )
762, 3, 10ringlidm 18571 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
l X k )  e.  B )  -> 
(  .1.  ( .r
`  R ) ( l X k ) )  =  ( l X k ) )
775, 75, 76syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
(  .1.  ( .r
`  R ) ( l X k ) )  =  ( l X k ) )
7861, 74, 773eqtrd 2660 . . . 4  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( ( m  e.  M  |->  ( ( l I m ) ( .r `  R ) ( m X k ) ) ) `  l )  =  ( l X k ) )
7919, 55, 783eqtrd 2660 . . 3  |-  ( (
ph  /\  ( l  e.  M  /\  k  e.  N ) )  -> 
( l ( I F X ) k )  =  ( l X k ) )
8079ralrimivva 2971 . 2  |-  ( ph  ->  A. l  e.  M  A. k  e.  N  ( l ( I F X ) k )  =  ( l X k ) )
812, 4, 1, 6, 6, 8, 13, 15mamucl 20207 . . . . 5  |-  ( ph  ->  ( I F X )  e.  ( B  ^m  ( M  X.  N ) ) )
82 elmapi 7879 . . . . 5  |-  ( ( I F X )  e.  ( B  ^m  ( M  X.  N
) )  ->  (
I F X ) : ( M  X.  N ) --> B )
8381, 82syl 17 . . . 4  |-  ( ph  ->  ( I F X ) : ( M  X.  N ) --> B )
84 ffn 6045 . . . 4  |-  ( ( I F X ) : ( M  X.  N ) --> B  -> 
( I F X )  Fn  ( M  X.  N ) )
8583, 84syl 17 . . 3  |-  ( ph  ->  ( I F X )  Fn  ( M  X.  N ) )
86 ffn 6045 . . . 4  |-  ( X : ( M  X.  N ) --> B  ->  X  Fn  ( M  X.  N ) )
8730, 86syl 17 . . 3  |-  ( ph  ->  X  Fn  ( M  X.  N ) )
88 eqfnov2 6767 . . 3  |-  ( ( ( I F X )  Fn  ( M  X.  N )  /\  X  Fn  ( M  X.  N ) )  -> 
( ( I F X )  =  X  <->  A. l  e.  M  A. k  e.  N  ( l ( I F X ) k )  =  ( l X k ) ) )
8985, 87, 88syl2anc 693 . 2  |-  ( ph  ->  ( ( I F X )  =  X  <->  A. l  e.  M  A. k  e.  N  ( l ( I F X ) k )  =  ( l X k ) ) )
9080, 89mpbird 247 1  |-  ( ph  ->  ( I F X )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   ifcif 4086   <.cotp 4185    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   1rcur 18501   Ringcrg 18547   maMul cmmul 20189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-mamu 20190
This theorem is referenced by:  matring  20249  mat1  20253
  Copyright terms: Public domain W3C validator