MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem2 Structured version   Visualization version   Unicode version

Theorem mdetunilem2 20419
Description: Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a  |-  A  =  ( N Mat  R )
mdetuni.b  |-  B  =  ( Base `  A
)
mdetuni.k  |-  K  =  ( Base `  R
)
mdetuni.0g  |-  .0.  =  ( 0g `  R )
mdetuni.1r  |-  .1.  =  ( 1r `  R )
mdetuni.pg  |-  .+  =  ( +g  `  R )
mdetuni.tg  |-  .x.  =  ( .r `  R )
mdetuni.n  |-  ( ph  ->  N  e.  Fin )
mdetuni.r  |-  ( ph  ->  R  e.  Ring )
mdetuni.ff  |-  ( ph  ->  D : B --> K )
mdetuni.al  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
mdetuni.li  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
mdetuni.sc  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
mdetunilem2.ph  |-  ( ps 
->  ph )
mdetunilem2.eg  |-  ( ps 
->  ( E  e.  N  /\  G  e.  N  /\  E  =/=  G
) )
mdetunilem2.f  |-  ( ( ps  /\  b  e.  N )  ->  F  e.  K )
mdetunilem2.h  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  H  e.  K )
Assertion
Ref Expression
mdetunilem2  |-  ( ps 
->  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )  =  .0.  )
Distinct variable groups:    ph, x, y, z, w, a, b   
x, B, y, z, w, a, b    x, K, y, z, w, a, b    x, N, y, z, w, a, b   
x, D, y, z, w, a, b    x,  .x. , y, z, w    .+ , a,
b, x, y, z, w    .0. , a, b, x, y, z, w    .1. , a, b, x, y, z, w    x, R, y, z, w    A, a, b, x, y, z, w    x, E, y, z, w    x, F, y, z, w    x, G, y, z, w    x, H, y, z, w    ps, a, b, x, y, z, w    E, a, b    G, a, b    F, a
Allowed substitution hints:    R( a, b)    .x. ( a, b)    F( b)    H( a, b)

Proof of Theorem mdetunilem2
StepHypRef Expression
1 mdetunilem2.ph . 2  |-  ( ps 
->  ph )
2 mdetuni.a . . 3  |-  A  =  ( N Mat  R )
3 mdetuni.k . . 3  |-  K  =  ( Base `  R
)
4 mdetuni.b . . 3  |-  B  =  ( Base `  A
)
5 mdetuni.n . . . 4  |-  ( ph  ->  N  e.  Fin )
61, 5syl 17 . . 3  |-  ( ps 
->  N  e.  Fin )
7 mdetuni.r . . . 4  |-  ( ph  ->  R  e.  Ring )
81, 7syl 17 . . 3  |-  ( ps 
->  R  e.  Ring )
9 mdetunilem2.f . . . . 5  |-  ( ( ps  /\  b  e.  N )  ->  F  e.  K )
1093adant2 1080 . . . 4  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  F  e.  K )
11 mdetunilem2.h . . . . 5  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  H  e.  K )
1210, 11ifcld 4131 . . . 4  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  if ( a  =  G ,  F ,  H
)  e.  K )
1310, 12ifcld 4131 . . 3  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) )  e.  K
)
142, 3, 4, 6, 8, 13matbas2d 20229 . 2  |-  ( ps 
->  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) )  e.  B )
15 eqidd 2623 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )
16 iftrue 4092 . . . . . . 7  |-  ( a  =  E  ->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) )  =  F )
17 csbeq1a 3542 . . . . . . 7  |-  ( b  =  w  ->  F  =  [_ w  /  b ]_ F )
1816, 17sylan9eq 2676 . . . . . 6  |-  ( ( a  =  E  /\  b  =  w )  ->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) )  =  [_ w  /  b ]_ F
)
1918adantl 482 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  E  /\  b  =  w )
)  ->  if (
a  =  E ,  F ,  if (
a  =  G ,  F ,  H )
)  =  [_ w  /  b ]_ F
)
20 eqidd 2623 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  E )  ->  N  =  N )
21 mdetunilem2.eg . . . . . . 7  |-  ( ps 
->  ( E  e.  N  /\  G  e.  N  /\  E  =/=  G
) )
2221simp1d 1073 . . . . . 6  |-  ( ps 
->  E  e.  N
)
2322adantr 481 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  E  e.  N )
24 simpr 477 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  w  e.  N )
25 nfv 1843 . . . . . . 7  |-  F/ b ( ps  /\  w  e.  N )
26 nfcsb1v 3549 . . . . . . . 8  |-  F/_ b [_ w  /  b ]_ F
2726nfel1 2779 . . . . . . 7  |-  F/ b
[_ w  /  b ]_ F  e.  K
2825, 27nfim 1825 . . . . . 6  |-  F/ b ( ( ps  /\  w  e.  N )  ->  [_ w  /  b ]_ F  e.  K
)
29 eleq1 2689 . . . . . . . 8  |-  ( b  =  w  ->  (
b  e.  N  <->  w  e.  N ) )
3029anbi2d 740 . . . . . . 7  |-  ( b  =  w  ->  (
( ps  /\  b  e.  N )  <->  ( ps  /\  w  e.  N ) ) )
3117eleq1d 2686 . . . . . . 7  |-  ( b  =  w  ->  ( F  e.  K  <->  [_ w  / 
b ]_ F  e.  K
) )
3230, 31imbi12d 334 . . . . . 6  |-  ( b  =  w  ->  (
( ( ps  /\  b  e.  N )  ->  F  e.  K )  <-> 
( ( ps  /\  w  e.  N )  ->  [_ w  /  b ]_ F  e.  K
) ) )
3328, 32, 9chvar 2262 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  [_ w  /  b ]_ F  e.  K )
34 nfv 1843 . . . . 5  |-  F/ a ( ps  /\  w  e.  N )
35 nfcv 2764 . . . . 5  |-  F/_ b E
36 nfcv 2764 . . . . 5  |-  F/_ a
w
37 nfcv 2764 . . . . 5  |-  F/_ a [_ w  /  b ]_ F
3815, 19, 20, 23, 24, 33, 34, 25, 35, 36, 37, 26ovmpt2dxf 6786 . . . 4  |-  ( ( ps  /\  w  e.  N )  ->  ( E ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  [_ w  /  b ]_ F
)
3921simp3d 1075 . . . . . . . . . . . . 13  |-  ( ps 
->  E  =/=  G
)
4039adantr 481 . . . . . . . . . . . 12  |-  ( ( ps  /\  w  e.  N )  ->  E  =/=  G )
41 neeq2 2857 . . . . . . . . . . . 12  |-  ( a  =  G  ->  ( E  =/=  a  <->  E  =/=  G ) )
4240, 41syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( ps  /\  w  e.  N )  ->  (
a  =  G  ->  E  =/=  a ) )
4342imp 445 . . . . . . . . . 10  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  E  =/=  a )
4443necomd 2849 . . . . . . . . 9  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  a  =/=  E )
4544neneqd 2799 . . . . . . . 8  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  -.  a  =  E )
4645adantrr 753 . . . . . . 7  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  -.  a  =  E )
4746iffalsed 4097 . . . . . 6  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  if (
a  =  E ,  F ,  if (
a  =  G ,  F ,  H )
)  =  if ( a  =  G ,  F ,  H )
)
48 iftrue 4092 . . . . . . . 8  |-  ( a  =  G  ->  if ( a  =  G ,  F ,  H
)  =  F )
4948, 17sylan9eq 2676 . . . . . . 7  |-  ( ( a  =  G  /\  b  =  w )  ->  if ( a  =  G ,  F ,  H )  =  [_ w  /  b ]_ F
)
5049adantl 482 . . . . . 6  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  if (
a  =  G ,  F ,  H )  =  [_ w  /  b ]_ F )
5147, 50eqtrd 2656 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  if (
a  =  E ,  F ,  if (
a  =  G ,  F ,  H )
)  =  [_ w  /  b ]_ F
)
52 eqidd 2623 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  N  =  N )
5321simp2d 1074 . . . . . 6  |-  ( ps 
->  G  e.  N
)
5453adantr 481 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  G  e.  N )
55 nfcv 2764 . . . . 5  |-  F/_ b G
5615, 51, 52, 54, 24, 33, 34, 25, 55, 36, 37, 26ovmpt2dxf 6786 . . . 4  |-  ( ( ps  /\  w  e.  N )  ->  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  [_ w  /  b ]_ F
)
5738, 56eqtr4d 2659 . . 3  |-  ( ( ps  /\  w  e.  N )  ->  ( E ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w ) )
5857ralrimiva 2966 . 2  |-  ( ps 
->  A. w  e.  N  ( E ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w ) )
59 mdetuni.0g . . 3  |-  .0.  =  ( 0g `  R )
60 mdetuni.1r . . 3  |-  .1.  =  ( 1r `  R )
61 mdetuni.pg . . 3  |-  .+  =  ( +g  `  R )
62 mdetuni.tg . . 3  |-  .x.  =  ( .r `  R )
63 mdetuni.ff . . 3  |-  ( ph  ->  D : B --> K )
64 mdetuni.al . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
65 mdetuni.li . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
66 mdetuni.sc . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
672, 4, 3, 59, 60, 61, 62, 5, 7, 63, 64, 65, 66mdetunilem1 20418 . 2  |-  ( ( ( ph  /\  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) )  e.  B  /\  A. w  e.  N  ( E
( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) w )  =  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) w ) )  /\  ( E  e.  N  /\  G  e.  N  /\  E  =/=  G ) )  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )  =  .0.  )
681, 14, 58, 21, 67syl31anc 1329 1  |-  ( ps 
->  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   [_csb 3533    \ cdif 3571   ifcif 4086   {csn 4177    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   Fincfn 7955   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   1rcur 18501   Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  mdetunilem6  20423  mdetunilem8  20425
  Copyright terms: Public domain W3C validator