MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetuni Structured version   Visualization version   Unicode version

Theorem mdetuni 20428
Description: According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.)
Hypotheses
Ref Expression
mdetuni.a  |-  A  =  ( N Mat  R )
mdetuni.b  |-  B  =  ( Base `  A
)
mdetuni.k  |-  K  =  ( Base `  R
)
mdetuni.0g  |-  .0.  =  ( 0g `  R )
mdetuni.1r  |-  .1.  =  ( 1r `  R )
mdetuni.pg  |-  .+  =  ( +g  `  R )
mdetuni.tg  |-  .x.  =  ( .r `  R )
mdetuni.n  |-  ( ph  ->  N  e.  Fin )
mdetuni.r  |-  ( ph  ->  R  e.  Ring )
mdetuni.ff  |-  ( ph  ->  D : B --> K )
mdetuni.al  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
mdetuni.li  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
mdetuni.sc  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
mdetuni.e  |-  E  =  ( N maDet  R )
mdetuni.cr  |-  ( ph  ->  R  e.  CRing )
mdetuni.f  |-  ( ph  ->  F  e.  B )
mdetuni.no  |-  ( ph  ->  ( D `  ( 1r `  A ) )  =  .1.  )
Assertion
Ref Expression
mdetuni  |-  ( ph  ->  ( D `  F
)  =  ( E `
 F ) )
Distinct variable groups:    ph, x, y, z, w    x, B, y, z, w    x, K, y, z, w    x, N, y, z, w    x, D, y, z, w    x,  .x. , y, z, w    x,  .+ , y, z, w    x,  .0. , y, z, w    x,  .1. , y, z, w    x, R, y, z, w    x, A, y, z, w    x, E, y, z, w    x, F, y, z, w

Proof of Theorem mdetuni
StepHypRef Expression
1 mdetuni.a . . 3  |-  A  =  ( N Mat  R )
2 mdetuni.b . . 3  |-  B  =  ( Base `  A
)
3 mdetuni.k . . 3  |-  K  =  ( Base `  R
)
4 mdetuni.0g . . 3  |-  .0.  =  ( 0g `  R )
5 mdetuni.1r . . 3  |-  .1.  =  ( 1r `  R )
6 mdetuni.pg . . 3  |-  .+  =  ( +g  `  R )
7 mdetuni.tg . . 3  |-  .x.  =  ( .r `  R )
8 mdetuni.n . . 3  |-  ( ph  ->  N  e.  Fin )
9 mdetuni.r . . 3  |-  ( ph  ->  R  e.  Ring )
10 mdetuni.ff . . 3  |-  ( ph  ->  D : B --> K )
11 mdetuni.al . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
12 mdetuni.li . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
13 mdetuni.sc . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
14 mdetuni.e . . 3  |-  E  =  ( N maDet  R )
15 mdetuni.cr . . 3  |-  ( ph  ->  R  e.  CRing )
16 mdetuni.f . . 3  |-  ( ph  ->  F  e.  B )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16mdetuni0 20427 . 2  |-  ( ph  ->  ( D `  F
)  =  ( ( D `  ( 1r
`  A ) ) 
.x.  ( E `  F ) ) )
18 mdetuni.no . . 3  |-  ( ph  ->  ( D `  ( 1r `  A ) )  =  .1.  )
1918oveq1d 6665 . 2  |-  ( ph  ->  ( ( D `  ( 1r `  A ) )  .x.  ( E `
 F ) )  =  (  .1.  .x.  ( E `  F ) ) )
2014, 1, 2, 3mdetcl 20402 . . . 4  |-  ( ( R  e.  CRing  /\  F  e.  B )  ->  ( E `  F )  e.  K )
2115, 16, 20syl2anc 693 . . 3  |-  ( ph  ->  ( E `  F
)  e.  K )
223, 7, 5ringlidm 18571 . . 3  |-  ( ( R  e.  Ring  /\  ( E `  F )  e.  K )  ->  (  .1.  .x.  ( E `  F ) )  =  ( E `  F
) )
239, 21, 22syl2anc 693 . 2  |-  ( ph  ->  (  .1.  .x.  ( E `  F )
)  =  ( E `
 F ) )
2417, 19, 233eqtrd 2660 1  |-  ( ph  ->  ( D `  F
)  =  ( E `
 F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   1rcur 18501   Ringcrg 18547   CRingccrg 18548   Mat cmat 20213   maDet cmdat 20390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-evpm 17912  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mdet 20391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator