| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meeteu | Structured version Visualization version Unicode version | ||
| Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetval2.b |
|
| meetval2.l |
|
| meetval2.m |
|
| meetval2.k |
|
| meetval2.x |
|
| meetval2.y |
|
| meetlem.e |
|
| Ref | Expression |
|---|---|
| meeteu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetlem.e |
. 2
| |
| 2 | eqid 2622 |
. . . 4
| |
| 3 | meetval2.m |
. . . 4
| |
| 4 | meetval2.k |
. . . 4
| |
| 5 | meetval2.x |
. . . 4
| |
| 6 | meetval2.y |
. . . 4
| |
| 7 | 2, 3, 4, 5, 6 | meetdef 17018 |
. . 3
|
| 8 | meetval2.b |
. . . . . 6
| |
| 9 | meetval2.l |
. . . . . 6
| |
| 10 | biid 251 |
. . . . . 6
| |
| 11 | 4 | adantr 481 |
. . . . . 6
|
| 12 | simpr 477 |
. . . . . 6
| |
| 13 | 8, 9, 2, 10, 11, 12 | glbeu 16996 |
. . . . 5
|
| 14 | 13 | ex 450 |
. . . 4
|
| 15 | 8, 9, 3, 4, 5, 6 | meetval2lem 17022 |
. . . . . 6
|
| 16 | 5, 6, 15 | syl2anc 693 |
. . . . 5
|
| 17 | 16 | reubidv 3126 |
. . . 4
|
| 18 | 14, 17 | sylibd 229 |
. . 3
|
| 19 | 7, 18 | sylbid 230 |
. 2
|
| 20 | 1, 19 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-oprab 6654 df-glb 16975 df-meet 16977 |
| This theorem is referenced by: meetlem 17025 |
| Copyright terms: Public domain | W3C validator |