MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meeteu Structured version   Visualization version   Unicode version

Theorem meeteu 17024
Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b  |-  B  =  ( Base `  K
)
meetval2.l  |-  .<_  =  ( le `  K )
meetval2.m  |-  ./\  =  ( meet `  K )
meetval2.k  |-  ( ph  ->  K  e.  V )
meetval2.x  |-  ( ph  ->  X  e.  B )
meetval2.y  |-  ( ph  ->  Y  e.  B )
meetlem.e  |-  ( ph  -> 
<. X ,  Y >.  e. 
dom  ./\  )
Assertion
Ref Expression
meeteu  |-  ( ph  ->  E! x  e.  B  ( ( x  .<_  X  /\  x  .<_  Y )  /\  A. z  e.  B  ( ( z 
.<_  X  /\  z  .<_  Y )  ->  z  .<_  x ) ) )
Distinct variable groups:    x, z, B    x,  ./\ , z    x, K, z    x, X, z   
x, Y, z    ph, x
Allowed substitution hints:    ph( z)    .<_ ( x, z)    V( x, z)

Proof of Theorem meeteu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 meetlem.e . 2  |-  ( ph  -> 
<. X ,  Y >.  e. 
dom  ./\  )
2 eqid 2622 . . . 4  |-  ( glb `  K )  =  ( glb `  K )
3 meetval2.m . . . 4  |-  ./\  =  ( meet `  K )
4 meetval2.k . . . 4  |-  ( ph  ->  K  e.  V )
5 meetval2.x . . . 4  |-  ( ph  ->  X  e.  B )
6 meetval2.y . . . 4  |-  ( ph  ->  Y  e.  B )
72, 3, 4, 5, 6meetdef 17018 . . 3  |-  ( ph  ->  ( <. X ,  Y >.  e.  dom  ./\  <->  { X ,  Y }  e.  dom  ( glb `  K ) ) )
8 meetval2.b . . . . . 6  |-  B  =  ( Base `  K
)
9 meetval2.l . . . . . 6  |-  .<_  =  ( le `  K )
10 biid 251 . . . . . 6  |-  ( ( A. y  e.  { X ,  Y }
x  .<_  y  /\  A. z  e.  B  ( A. y  e.  { X ,  Y } z  .<_  y  ->  z  .<_  x ) )  <->  ( A. y  e.  { X ,  Y } x  .<_  y  /\  A. z  e.  B  ( A. y  e.  { X ,  Y }
z  .<_  y  ->  z  .<_  x ) ) )
114adantr 481 . . . . . 6  |-  ( (
ph  /\  { X ,  Y }  e.  dom  ( glb `  K ) )  ->  K  e.  V )
12 simpr 477 . . . . . 6  |-  ( (
ph  /\  { X ,  Y }  e.  dom  ( glb `  K ) )  ->  { X ,  Y }  e.  dom  ( glb `  K ) )
138, 9, 2, 10, 11, 12glbeu 16996 . . . . 5  |-  ( (
ph  /\  { X ,  Y }  e.  dom  ( glb `  K ) )  ->  E! x  e.  B  ( A. y  e.  { X ,  Y } x  .<_  y  /\  A. z  e.  B  ( A. y  e.  { X ,  Y } z  .<_  y  -> 
z  .<_  x ) ) )
1413ex 450 . . . 4  |-  ( ph  ->  ( { X ,  Y }  e.  dom  ( glb `  K )  ->  E! x  e.  B  ( A. y  e.  { X ,  Y } x  .<_  y  /\  A. z  e.  B  ( A. y  e.  { X ,  Y }
z  .<_  y  ->  z  .<_  x ) ) ) )
158, 9, 3, 4, 5, 6meetval2lem 17022 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( A. y  e.  { X ,  Y } x  .<_  y  /\  A. z  e.  B  ( A. y  e.  { X ,  Y }
z  .<_  y  ->  z  .<_  x ) )  <->  ( (
x  .<_  X  /\  x  .<_  Y )  /\  A. z  e.  B  (
( z  .<_  X  /\  z  .<_  Y )  -> 
z  .<_  x ) ) ) )
165, 6, 15syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( A. y  e.  { X ,  Y } x  .<_  y  /\  A. z  e.  B  ( A. y  e.  { X ,  Y }
z  .<_  y  ->  z  .<_  x ) )  <->  ( (
x  .<_  X  /\  x  .<_  Y )  /\  A. z  e.  B  (
( z  .<_  X  /\  z  .<_  Y )  -> 
z  .<_  x ) ) ) )
1716reubidv 3126 . . . 4  |-  ( ph  ->  ( E! x  e.  B  ( A. y  e.  { X ,  Y } x  .<_  y  /\  A. z  e.  B  ( A. y  e.  { X ,  Y }
z  .<_  y  ->  z  .<_  x ) )  <->  E! x  e.  B  ( (
x  .<_  X  /\  x  .<_  Y )  /\  A. z  e.  B  (
( z  .<_  X  /\  z  .<_  Y )  -> 
z  .<_  x ) ) ) )
1814, 17sylibd 229 . . 3  |-  ( ph  ->  ( { X ,  Y }  e.  dom  ( glb `  K )  ->  E! x  e.  B  ( ( x 
.<_  X  /\  x  .<_  Y )  /\  A. z  e.  B  ( (
z  .<_  X  /\  z  .<_  Y )  ->  z  .<_  x ) ) ) )
197, 18sylbid 230 . 2  |-  ( ph  ->  ( <. X ,  Y >.  e.  dom  ./\  ->  E! x  e.  B  ( ( x  .<_  X  /\  x  .<_  Y )  /\  A. z  e.  B  ( ( z  .<_  X  /\  z  .<_  Y )  -> 
z  .<_  x ) ) ) )
201, 19mpd 15 1  |-  ( ph  ->  E! x  e.  B  ( ( x  .<_  X  /\  x  .<_  Y )  /\  A. z  e.  B  ( ( z 
.<_  X  /\  z  .<_  Y )  ->  z  .<_  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114   ` cfv 5888   Basecbs 15857   lecple 15948   glbcglb 16943   meetcmee 16945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-oprab 6654  df-glb 16975  df-meet 16977
This theorem is referenced by:  meetlem  17025
  Copyright terms: Public domain W3C validator