MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Structured version   Visualization version   Unicode version

Theorem monfval 16392
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  ( Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
Assertion
Ref Expression
monfval  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Distinct variable groups:    f, g, x, y, z, B    ph, f,
g, x, y, z    C, f, g, x, y, z    f, H, g, x, y, z    .x. , f,
g, x, y, z   
f, M
Allowed substitution hints:    M( x, y, z, g)

Proof of Theorem monfval
Dummy variables  b 
c  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2  |-  M  =  (Mono `  C )
2 ismon.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvexd 6203 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
4 fveq2 6191 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
5 ismon.b . . . . . 6  |-  B  =  ( Base `  C
)
64, 5syl6eqr 2674 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
7 fvexd 6203 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  e.  _V )
8 simpl 473 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
98fveq2d 6195 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  ( Hom  `  C ) )
10 ismon.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
119, 10syl6eqr 2674 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  H )
12 simplr 792 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  b  =  B )
13 simpr 477 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  h  =  H )
1413oveqd 6667 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x h y )  =  ( x H y ) )
1513oveqd 6667 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
z h x )  =  ( z H x ) )
16 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  c  =  C )
1716fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  (comp `  C ) )
18 ismon.o . . . . . . . . . . . . . . 15  |-  .x.  =  (comp `  C )
1917, 18syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  .x.  )
2019oveqd 6667 . . . . . . . . . . . . 13  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( <. z ,  x >. (comp `  c ) y )  =  ( <. z ,  x >.  .x.  y ) )
2120oveqd 6667 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
f ( <. z ,  x >. (comp `  c
) y ) g )  =  ( f ( <. z ,  x >.  .x.  y ) g ) )
2215, 21mpteq12dv 4733 . . . . . . . . . . 11  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) )  =  ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) )
2322cnveqd 5298 . . . . . . . . . 10  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) )  =  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) )
2423funeqd 5910 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2512, 24raleqbidv 3152 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2614, 25rabeqbidv 3195 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) ) }  =  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } )
2712, 12, 26mpt2eq123dv 6717 . . . . . 6  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  | 
A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c )
y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
287, 11, 27csbied2 3561 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  ->  [_ ( Hom  `  c
)  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
293, 6, 28csbied2 3561 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ [_ ( Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b 
|->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
30 df-mon 16390 . . . 4  |- Mono  =  ( c  e.  Cat  |->  [_ ( Base `  c )  /  b ]_ [_ ( Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } ) )
31 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
325, 31eqeltri 2697 . . . . 5  |-  B  e. 
_V
3332, 32mpt2ex 7247 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } )  e. 
_V
3429, 30, 33fvmpt 6282 . . 3  |-  ( C  e.  Cat  ->  (Mono `  C )  =  ( x  e.  B , 
y  e.  B  |->  { f  e.  ( x H y )  | 
A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) } ) )
352, 34syl 17 . 2  |-  ( ph  ->  (Mono `  C )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
361, 35syl5eq 2668 1  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [_csb 3533   <.cop 4183    |-> cmpt 4729   `'ccnv 5113   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325  Monocmon 16388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mon 16390
This theorem is referenced by:  ismon  16393  monpropd  16397
  Copyright terms: Public domain W3C validator