MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon Structured version   Visualization version   Unicode version

Theorem ismon 16393
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  ( Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
ismon.x  |-  ( ph  ->  X  e.  B )
ismon.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ismon  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) ) ) )
Distinct variable groups:    z, g, B    ph, g, z    C, g, z    g, H, z    .x. , g, z    g, F, z    g, X, z   
g, Y, z
Allowed substitution hints:    M( z, g)

Proof of Theorem ismon
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.b . . . . 5  |-  B  =  ( Base `  C
)
2 ismon.h . . . . 5  |-  H  =  ( Hom  `  C
)
3 ismon.o . . . . 5  |-  .x.  =  (comp `  C )
4 ismon.s . . . . 5  |-  M  =  (Mono `  C )
5 ismon.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
61, 2, 3, 4, 5monfval 16392 . . . 4  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
7 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  x  =  X )
8 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
y  =  Y )
97, 8oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x H y )  =  ( X H Y ) )
107oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( z H x )  =  ( z H X ) )
117opeq2d 4409 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  <. z ,  x >.  = 
<. z ,  X >. )
1211, 8oveq12d 6668 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( <. z ,  x >.  .x.  y )  =  ( <. z ,  X >.  .x.  Y ) )
1312oveqd 6667 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( f ( <.
z ,  x >.  .x.  y ) g )  =  ( f (
<. z ,  X >.  .x. 
Y ) g ) )
1410, 13mpteq12dv 4733 . . . . . . . 8  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) )  =  ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) )
1514cnveqd 5298 . . . . . . 7  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) )  =  `' ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) )
1615funeqd 5910 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( Fun  `' (
g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) )  <->  Fun  `' ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) ) )
1716ralbidv 2986 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) )  <->  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) ) )
189, 17rabeqbidv 3195 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) }  =  { f  e.  ( X H Y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) } )
19 ismon.x . . . 4  |-  ( ph  ->  X  e.  B )
20 ismon.y . . . 4  |-  ( ph  ->  Y  e.  B )
21 ovex 6678 . . . . . 6  |-  ( X H Y )  e. 
_V
2221rabex 4813 . . . . 5  |-  { f  e.  ( X H Y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H X ) 
|->  ( f ( <.
z ,  X >.  .x. 
Y ) g ) ) }  e.  _V
2322a1i 11 . . . 4  |-  ( ph  ->  { f  e.  ( X H Y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) }  e.  _V )
246, 18, 19, 20, 23ovmpt2d 6788 . . 3  |-  ( ph  ->  ( X M Y )  =  { f  e.  ( X H Y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H X ) 
|->  ( f ( <.
z ,  X >.  .x. 
Y ) g ) ) } )
2524eleq2d 2687 . 2  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
F  e.  { f  e.  ( X H Y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H X ) 
|->  ( f ( <.
z ,  X >.  .x. 
Y ) g ) ) } ) )
26 oveq1 6657 . . . . . . 7  |-  ( f  =  F  ->  (
f ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) g ) )
2726mpteq2dv 4745 . . . . . 6  |-  ( f  =  F  ->  (
g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) )  =  ( g  e.  ( z H X ) 
|->  ( F ( <.
z ,  X >.  .x. 
Y ) g ) ) )
2827cnveqd 5298 . . . . 5  |-  ( f  =  F  ->  `' ( g  e.  ( z H X ) 
|->  ( f ( <.
z ,  X >.  .x. 
Y ) g ) )  =  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) )
2928funeqd 5910 . . . 4  |-  ( f  =  F  ->  ( Fun  `' ( g  e.  ( z H X )  |->  ( f (
<. z ,  X >.  .x. 
Y ) g ) )  <->  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) ) )
3029ralbidv 2986 . . 3  |-  ( f  =  F  ->  ( A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( f (
<. z ,  X >.  .x. 
Y ) g ) )  <->  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) ) )
3130elrab 3363 . 2  |-  ( F  e.  { f  e.  ( X H Y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) }  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) ) )
3225, 31syl6bb 276 1  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   <.cop 4183    |-> cmpt 4729   `'ccnv 5113   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325  Monocmon 16388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mon 16390
This theorem is referenced by:  ismon2  16394  monhom  16395  isepi  16400
  Copyright terms: Public domain W3C validator