Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpt2mptxf Structured version   Visualization version   Unicode version

Theorem mpt2mptxf 29477
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version 
B ( x ) is not assumed to be constant w.r.t  x. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Thierry Arnoux, 31-Mar-2018.)
Hypotheses
Ref Expression
mpt2mptxf.0  |-  F/_ x C
mpt2mptxf.1  |-  F/_ y C
mpt2mptxf.2  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
Assertion
Ref Expression
mpt2mptxf  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Distinct variable groups:    x, y,
z, A    y, B, z    z, D
Allowed substitution hints:    B( x)    C( x, y, z)    D( x, y)

Proof of Theorem mpt2mptxf
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4730 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  { <. z ,  w >.  |  ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }
2 df-mpt2 6655 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. <. x ,  y >. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) }
3 eliunxp 5259 . . . . . . 7  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
43anbi1i 731 . . . . . 6  |-  ( ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C )  <->  ( E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )  /\  w  =  C )
)
5 mpt2mptxf.1 . . . . . . . . . 10  |-  F/_ y C
65nfeq2 2780 . . . . . . . . 9  |-  F/ y  w  =  C
7619.41 2103 . . . . . . . 8  |-  ( E. y ( ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )  /\  w  =  C )  <->  ( E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )  /\  w  =  C )
)
87exbii 1774 . . . . . . 7  |-  ( E. x E. y ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  E. x
( E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C ) )
9 mpt2mptxf.0 . . . . . . . . 9  |-  F/_ x C
109nfeq2 2780 . . . . . . . 8  |-  F/ x  w  =  C
111019.41 2103 . . . . . . 7  |-  ( E. x ( E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  ( E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )  /\  w  =  C )
)
128, 11bitri 264 . . . . . 6  |-  ( E. x E. y ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  ( E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )  /\  w  =  C )
)
13 anass 681 . . . . . . . 8  |-  ( ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  ( z  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) ) )
14 mpt2mptxf.2 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
1514eqeq2d 2632 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( w  =  C  <->  w  =  D
) )
1615anbi2d 740 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C
)  <->  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
1716pm5.32i 669 . . . . . . . 8  |-  ( ( z  =  <. x ,  y >.  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  <->  ( z  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
1813, 17bitri 264 . . . . . . 7  |-  ( ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  ( z  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
19182exbii 1775 . . . . . 6  |-  ( E. x E. y ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
204, 12, 193bitr2i 288 . . . . 5  |-  ( ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
2120opabbii 4717 . . . 4  |-  { <. z ,  w >.  |  ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }  =  { <. z ,  w >.  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) }
22 dfoprab2 6701 . . . 4  |-  { <. <.
x ,  y >. ,  w >.  |  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  D ) }  =  { <. z ,  w >.  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) }
2321, 22eqtr4i 2647 . . 3  |-  { <. z ,  w >.  |  ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }  =  { <. <. x ,  y
>. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) }
242, 23eqtr4i 2647 . 2  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. z ,  w >.  |  (
z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }
251, 24eqtr4i 2647 1  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   F/_wnfc 2751   {csn 4177   <.cop 4183   U_ciun 4520   {copab 4712    |-> cmpt 4729    X. cxp 5112   {coprab 6651    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  gsummpt2co  29780
  Copyright terms: Public domain W3C validator