Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2co Structured version   Visualization version   Unicode version

Theorem gsummpt2co 29780
Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
gsummpt2co.b  |-  B  =  ( Base `  W
)
gsummpt2co.z  |-  .0.  =  ( 0g `  W )
gsummpt2co.w  |-  ( ph  ->  W  e. CMnd )
gsummpt2co.a  |-  ( ph  ->  A  e.  Fin )
gsummpt2co.e  |-  ( ph  ->  E  e.  V )
gsummpt2co.1  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
gsummpt2co.2  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  E )
gsummpt2co.3  |-  F  =  ( x  e.  A  |->  D )
Assertion
Ref Expression
gsummpt2co  |-  ( ph  ->  ( W  gsumg  ( x  e.  A  |->  C ) )  =  ( W  gsumg  ( y  e.  E  |->  ( W  gsumg  ( x  e.  ( `' F " { y } )  |->  C ) ) ) ) )
Distinct variable groups:    x,  .0. , y    x, A, y    x, B, y    y, C    x, E, y    x, F, y   
y, V    x, W, y    ph, x
Allowed substitution hints:    ph( y)    C( x)    D( x, y)    V( x)

Proof of Theorem gsummpt2co
Dummy variables  z  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3549 . . . 4  |-  F/_ x [_ ( 2nd `  p
)  /  x ]_ C
2 gsummpt2co.b . . . 4  |-  B  =  ( Base `  W
)
3 gsummpt2co.z . . . 4  |-  .0.  =  ( 0g `  W )
4 csbeq1a 3542 . . . 4  |-  ( x  =  ( 2nd `  p
)  ->  C  =  [_ ( 2nd `  p
)  /  x ]_ C )
5 gsummpt2co.w . . . 4  |-  ( ph  ->  W  e. CMnd )
6 gsummpt2co.a . . . 4  |-  ( ph  ->  A  e.  Fin )
7 ssid 3624 . . . . 5  |-  B  C_  B
87a1i 11 . . . 4  |-  ( ph  ->  B  C_  B )
9 gsummpt2co.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
10 elcnv 5299 . . . . . 6  |-  ( p  e.  `' F  <->  E. z E. x ( p  = 
<. z ,  x >.  /\  x F z ) )
11 vex 3203 . . . . . . . . . 10  |-  z  e. 
_V
12 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
1311, 12op2ndd 7179 . . . . . . . . 9  |-  ( p  =  <. z ,  x >.  ->  ( 2nd `  p
)  =  x )
1413adantr 481 . . . . . . . 8  |-  ( ( p  =  <. z ,  x >.  /\  x F z )  -> 
( 2nd `  p
)  =  x )
15 gsummpt2co.3 . . . . . . . . . . 11  |-  F  =  ( x  e.  A  |->  D )
1615dmmptss 5631 . . . . . . . . . 10  |-  dom  F  C_  A
1712, 11breldm 5329 . . . . . . . . . 10  |-  ( x F z  ->  x  e.  dom  F )
1816, 17sseldi 3601 . . . . . . . . 9  |-  ( x F z  ->  x  e.  A )
1918adantl 482 . . . . . . . 8  |-  ( ( p  =  <. z ,  x >.  /\  x F z )  ->  x  e.  A )
2014, 19eqeltrd 2701 . . . . . . 7  |-  ( ( p  =  <. z ,  x >.  /\  x F z )  -> 
( 2nd `  p
)  e.  A )
2120exlimivv 1860 . . . . . 6  |-  ( E. z E. x ( p  =  <. z ,  x >.  /\  x F z )  -> 
( 2nd `  p
)  e.  A )
2210, 21sylbi 207 . . . . 5  |-  ( p  e.  `' F  -> 
( 2nd `  p
)  e.  A )
2322adantl 482 . . . 4  |-  ( (
ph  /\  p  e.  `' F )  ->  ( 2nd `  p )  e.  A )
2415funmpt2 5927 . . . . . . 7  |-  Fun  F
25 funcnvcnv 5956 . . . . . . 7  |-  ( Fun 
F  ->  Fun  `' `' F )
2624, 25ax-mp 5 . . . . . 6  |-  Fun  `' `' F
2726a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  Fun  `' `' F )
28 dfdm4 5316 . . . . . . . 8  |-  dom  F  =  ran  `' F
2915dmeqi 5325 . . . . . . . . 9  |-  dom  F  =  dom  ( x  e.  A  |->  D )
30 gsummpt2co.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  E )
3130ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  D  e.  E )
32 dmmptg 5632 . . . . . . . . . 10  |-  ( A. x  e.  A  D  e.  E  ->  dom  (
x  e.  A  |->  D )  =  A )
3331, 32syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  D )  =  A )
3429, 33syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  dom  F  =  A )
3528, 34syl5eqr 2670 . . . . . . 7  |-  ( ph  ->  ran  `' F  =  A )
3635eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( x  e.  ran  `' F  <->  x  e.  A
) )
3736biimpar 502 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ran  `' F )
38 relcnv 5503 . . . . . 6  |-  Rel  `' F
39 fcnvgreu 29472 . . . . . 6  |-  ( ( ( Rel  `' F  /\  Fun  `' `' F
)  /\  x  e.  ran  `' F )  ->  E! p  e.  `'  F x  =  ( 2nd `  p ) )
4038, 39mpanl1 716 . . . . 5  |-  ( ( Fun  `' `' F  /\  x  e.  ran  `' F )  ->  E! p  e.  `'  F x  =  ( 2nd `  p ) )
4127, 37, 40syl2anc 693 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E! p  e.  `'  F x  =  ( 2nd `  p ) )
421, 2, 3, 4, 5, 6, 8, 9, 23, 41gsummptf1o 18362 . . 3  |-  ( ph  ->  ( W  gsumg  ( x  e.  A  |->  C ) )  =  ( W  gsumg  ( p  e.  `' F  |->  [_ ( 2nd `  p
)  /  x ]_ C ) ) )
4315rnmptss 6392 . . . . . . . 8  |-  ( A. x  e.  A  D  e.  E  ->  ran  F  C_  E )
4431, 43syl 17 . . . . . . 7  |-  ( ph  ->  ran  F  C_  E
)
45 dfcnv2 29476 . . . . . . 7  |-  ( ran 
F  C_  E  ->  `' F  =  U_ z  e.  E  ( {
z }  X.  ( `' F " { z } ) ) )
4644, 45syl 17 . . . . . 6  |-  ( ph  ->  `' F  =  U_ z  e.  E  ( { z }  X.  ( `' F " { z } ) ) )
4746mpteq1d 4738 . . . . 5  |-  ( ph  ->  ( p  e.  `' F  |->  [_ ( 2nd `  p
)  /  x ]_ C )  =  ( p  e.  U_ z  e.  E  ( {
z }  X.  ( `' F " { z } ) )  |->  [_ ( 2nd `  p )  /  x ]_ C
) )
48 nfcv 2764 . . . . . 6  |-  F/_ z [_ ( 2nd `  p
)  /  x ]_ C
49 csbeq1 3536 . . . . . . . 8  |-  ( ( 2nd `  p )  =  x  ->  [_ ( 2nd `  p )  /  x ]_ C  =  [_ x  /  x ]_ C
)
5013, 49syl 17 . . . . . . 7  |-  ( p  =  <. z ,  x >.  ->  [_ ( 2nd `  p
)  /  x ]_ C  =  [_ x  /  x ]_ C )
51 csbid 3541 . . . . . . 7  |-  [_ x  /  x ]_ C  =  C
5250, 51syl6eq 2672 . . . . . 6  |-  ( p  =  <. z ,  x >.  ->  [_ ( 2nd `  p
)  /  x ]_ C  =  C )
5348, 1, 52mpt2mptxf 29477 . . . . 5  |-  ( p  e.  U_ z  e.  E  ( { z }  X.  ( `' F " { z } ) )  |->  [_ ( 2nd `  p )  /  x ]_ C
)  =  ( z  e.  E ,  x  e.  ( `' F " { z } ) 
|->  C )
5447, 53syl6eq 2672 . . . 4  |-  ( ph  ->  ( p  e.  `' F  |->  [_ ( 2nd `  p
)  /  x ]_ C )  =  ( z  e.  E ,  x  e.  ( `' F " { z } )  |->  C ) )
5554oveq2d 6666 . . 3  |-  ( ph  ->  ( W  gsumg  ( p  e.  `' F  |->  [_ ( 2nd `  p
)  /  x ]_ C ) )  =  ( W  gsumg  ( z  e.  E ,  x  e.  ( `' F " { z } )  |->  C ) ) )
56 gsummpt2co.e . . . 4  |-  ( ph  ->  E  e.  V )
57 mptfi 8265 . . . . . . . 8  |-  ( A  e.  Fin  ->  (
x  e.  A  |->  D )  e.  Fin )
5815, 57syl5eqel 2705 . . . . . . 7  |-  ( A  e.  Fin  ->  F  e.  Fin )
59 cnvfi 8248 . . . . . . 7  |-  ( F  e.  Fin  ->  `' F  e.  Fin )
606, 58, 593syl 18 . . . . . 6  |-  ( ph  ->  `' F  e.  Fin )
61 imaexg 7103 . . . . . 6  |-  ( `' F  e.  Fin  ->  ( `' F " { z } )  e.  _V )
6260, 61syl 17 . . . . 5  |-  ( ph  ->  ( `' F " { z } )  e.  _V )
6362adantr 481 . . . 4  |-  ( (
ph  /\  z  e.  E )  ->  ( `' F " { z } )  e.  _V )
64 simpll 790 . . . . . 6  |-  ( ( ( ph  /\  z  e.  E )  /\  x  e.  ( `' F " { z } ) )  ->  ph )
65 imassrn 5477 . . . . . . . . 9  |-  ( `' F " { z } )  C_  ran  `' F
6665, 28sseqtr4i 3638 . . . . . . . 8  |-  ( `' F " { z } )  C_  dom  F
6766, 16sstri 3612 . . . . . . 7  |-  ( `' F " { z } )  C_  A
6811, 12elimasn 5490 . . . . . . . . . 10  |-  ( x  e.  ( `' F " { z } )  <->  <. z ,  x >.  e.  `' F )
6968biimpi 206 . . . . . . . . 9  |-  ( x  e.  ( `' F " { z } )  ->  <. z ,  x >.  e.  `' F )
7069adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  E )  /\  x  e.  ( `' F " { z } ) )  ->  <. z ,  x >.  e.  `' F )
7170, 68sylibr 224 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  E )  /\  x  e.  ( `' F " { z } ) )  ->  x  e.  ( `' F " { z } ) )
7267, 71sseldi 3601 . . . . . 6  |-  ( ( ( ph  /\  z  e.  E )  /\  x  e.  ( `' F " { z } ) )  ->  x  e.  A )
7364, 72, 9syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  z  e.  E )  /\  x  e.  ( `' F " { z } ) )  ->  C  e.  B )
7473anasss 679 . . . 4  |-  ( (
ph  /\  ( z  e.  E  /\  x  e.  ( `' F " { z } ) ) )  ->  C  e.  B )
75 df-br 4654 . . . . . . . . 9  |-  ( z `' F x  <->  <. z ,  x >.  e.  `' F )
7670, 75sylibr 224 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  E )  /\  x  e.  ( `' F " { z } ) )  ->  z `' F x )
7776anasss 679 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  E  /\  x  e.  ( `' F " { z } ) ) )  ->  z `' F x )
7877pm2.24d 147 . . . . . 6  |-  ( (
ph  /\  ( z  e.  E  /\  x  e.  ( `' F " { z } ) ) )  ->  ( -.  z `' F x  ->  C  =  .0.  ) )
7978imp 445 . . . . 5  |-  ( ( ( ph  /\  (
z  e.  E  /\  x  e.  ( `' F " { z } ) ) )  /\  -.  z `' F x )  ->  C  =  .0.  )
8079anasss 679 . . . 4  |-  ( (
ph  /\  ( (
z  e.  E  /\  x  e.  ( `' F " { z } ) )  /\  -.  z `' F x ) )  ->  C  =  .0.  )
812, 3, 5, 56, 63, 74, 60, 80gsum2d2 18373 . . 3  |-  ( ph  ->  ( W  gsumg  ( z  e.  E ,  x  e.  ( `' F " { z } )  |->  C ) )  =  ( W 
gsumg  ( z  e.  E  |->  ( W  gsumg  ( x  e.  ( `' F " { z } )  |->  C ) ) ) ) )
8242, 55, 813eqtrd 2660 . 2  |-  ( ph  ->  ( W  gsumg  ( x  e.  A  |->  C ) )  =  ( W  gsumg  ( z  e.  E  |->  ( W  gsumg  ( x  e.  ( `' F " { z } )  |->  C ) ) ) ) )
83 nfcv 2764 . . . 4  |-  F/_ z
( W  gsumg  ( x  e.  ( `' F " { y } )  |->  C ) )
84 nfcv 2764 . . . 4  |-  F/_ y
( W  gsumg  ( x  e.  ( `' F " { z } )  |->  C ) )
85 sneq 4187 . . . . . . 7  |-  ( y  =  z  ->  { y }  =  { z } )
8685imaeq2d 5466 . . . . . 6  |-  ( y  =  z  ->  ( `' F " { y } )  =  ( `' F " { z } ) )
8786mpteq1d 4738 . . . . 5  |-  ( y  =  z  ->  (
x  e.  ( `' F " { y } )  |->  C )  =  ( x  e.  ( `' F " { z } ) 
|->  C ) )
8887oveq2d 6666 . . . 4  |-  ( y  =  z  ->  ( W  gsumg  ( x  e.  ( `' F " { y } )  |->  C ) )  =  ( W 
gsumg  ( x  e.  ( `' F " { z } )  |->  C ) ) )
8983, 84, 88cbvmpt 4749 . . 3  |-  ( y  e.  E  |->  ( W 
gsumg  ( x  e.  ( `' F " { y } )  |->  C ) ) )  =  ( z  e.  E  |->  ( W  gsumg  ( x  e.  ( `' F " { z } )  |->  C ) ) )
9089oveq2i 6661 . 2  |-  ( W 
gsumg  ( y  e.  E  |->  ( W  gsumg  ( x  e.  ( `' F " { y } )  |->  C ) ) ) )  =  ( W  gsumg  ( z  e.  E  |->  ( W  gsumg  ( x  e.  ( `' F " { z } )  |->  C ) ) ) )
9182, 90syl6eqr 2674 1  |-  ( ph  ->  ( W  gsumg  ( x  e.  A  |->  C ) )  =  ( W  gsumg  ( y  e.  E  |->  ( W  gsumg  ( x  e.  ( `' F " { y } )  |->  C ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E!wreu 2914   _Vcvv 3200   [_csb 3533    C_ wss 3574   {csn 4177   <.cop 4183   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Rel wrel 5119   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   2ndc2nd 7167   Fincfn 7955   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  gsummpt2d  29781
  Copyright terms: Public domain W3C validator