| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt2xopoveq | Structured version Visualization version Unicode version | ||
| Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpt2xopoveq.f |
|
| Ref | Expression |
|---|---|
| mpt2xopoveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpt2xopoveq.f |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | fveq2 6191 |
. . . . 5
| |
| 4 | op1stg 7180 |
. . . . . 6
| |
| 5 | 4 | adantr 481 |
. . . . 5
|
| 6 | 3, 5 | sylan9eqr 2678 |
. . . 4
|
| 7 | 6 | adantrr 753 |
. . 3
|
| 8 | sbceq1a 3446 |
. . . . . 6
| |
| 9 | 8 | adantl 482 |
. . . . 5
|
| 10 | 9 | adantl 482 |
. . . 4
|
| 11 | sbceq1a 3446 |
. . . . . 6
| |
| 12 | 11 | adantr 481 |
. . . . 5
|
| 13 | 12 | adantl 482 |
. . . 4
|
| 14 | 10, 13 | bitrd 268 |
. . 3
|
| 15 | 7, 14 | rabeqbidv 3195 |
. 2
|
| 16 | opex 4932 |
. . 3
| |
| 17 | 16 | a1i 11 |
. 2
|
| 18 | simpr 477 |
. 2
| |
| 19 | rabexg 4812 |
. . 3
| |
| 20 | 19 | ad2antrr 762 |
. 2
|
| 21 | equid 1939 |
. . 3
| |
| 22 | nfvd 1844 |
. . 3
| |
| 23 | 21, 22 | ax-mp 5 |
. 2
|
| 24 | nfvd 1844 |
. . 3
| |
| 25 | 21, 24 | ax-mp 5 |
. 2
|
| 26 | nfcv 2764 |
. 2
| |
| 27 | nfcv 2764 |
. 2
| |
| 28 | nfsbc1v 3455 |
. . 3
| |
| 29 | nfcv 2764 |
. . 3
| |
| 30 | 28, 29 | nfrab 3123 |
. 2
|
| 31 | nfsbc1v 3455 |
. . . 4
| |
| 32 | 26, 31 | nfsbc 3457 |
. . 3
|
| 33 | nfcv 2764 |
. . 3
| |
| 34 | 32, 33 | nfrab 3123 |
. 2
|
| 35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpt2dxf 6786 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 |
| This theorem is referenced by: mpt2xopovel 7346 mpt2xopoveqd 7347 |
| Copyright terms: Public domain | W3C validator |