MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrcl Structured version   Visualization version   Unicode version

Theorem mptrcl 6289
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.)
Hypothesis
Ref Expression
mptrcl.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptrcl  |-  ( I  e.  ( F `  X )  ->  X  e.  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)    I( x)    X( x)

Proof of Theorem mptrcl
StepHypRef Expression
1 n0i 3920 . 2  |-  ( I  e.  ( F `  X )  ->  -.  ( F `  X )  =  (/) )
2 mptrcl.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
32dmmptss 5631 . . . 4  |-  dom  F  C_  A
43sseli 3599 . . 3  |-  ( X  e.  dom  F  ->  X  e.  A )
5 ndmfv 6218 . . 3  |-  ( -.  X  e.  dom  F  ->  ( F `  X
)  =  (/) )
64, 5nsyl4 156 . 2  |-  ( -.  ( F `  X
)  =  (/)  ->  X  e.  A )
71, 6syl 17 1  |-  ( I  e.  ( F `  X )  ->  X  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   (/)c0 3915    |-> cmpt 4729   dom cdm 5114   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896
This theorem is referenced by:  initorcl  16644  termorcl  16645  zeroorcl  16646  issubrg  18780  elmptrab  21630
  Copyright terms: Public domain W3C validator