MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2i Structured version   Visualization version   Unicode version

Theorem fvmpt2i 6290
Description: Value of a function given by the "maps to" notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
mptrcl.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmpt2i  |-  ( x  e.  A  ->  ( F `  x )  =  (  _I  `  B
) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpt2i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3536 . . 3  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
2 csbid 3541 . . 3  |-  [_ x  /  x ]_ B  =  B
31, 2syl6eq 2672 . 2  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
4 mptrcl.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 nfcv 2764 . . . 4  |-  F/_ y B
6 nfcsb1v 3549 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 csbeq1a 3542 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
85, 6, 7cbvmpt 4749 . . 3  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
94, 8eqtri 2644 . 2  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
103, 9fvmpti 6281 1  |-  ( x  e.  A  ->  ( F `  x )  =  (  _I  `  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   [_csb 3533    |-> cmpt 4729    _I cid 5023   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  fvmpt2  6291  sumfc  14440  fsumf1o  14454  sumss  14455  isumshft  14571  prodfc  14675  fprodf1o  14676  mbfsup  23431  itg2splitlem  23515  dgrle  23999
  Copyright terms: Public domain W3C validator