Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg3 Structured version   Visualization version   Unicode version

Theorem mrefg3 37271
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrefg3  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  ( E. g  e.  ( ~P X  i^i  Fin ) S  =  ( F `  g )  <->  E. g  e.  ( ~P S  i^i  Fin ) S  C_  ( F `  g )
) )
Distinct variable groups:    C, g    g, F    S, g    g, X

Proof of Theorem mrefg3
StepHypRef Expression
1 isnacs.f . . . 4  |-  F  =  (mrCls `  C )
21mrefg2 37270 . . 3  |-  ( C  e.  (Moore `  X
)  ->  ( E. g  e.  ( ~P X  i^i  Fin ) S  =  ( F `  g )  <->  E. g  e.  ( ~P S  i^i  Fin ) S  =  ( F `  g ) ) )
32adantr 481 . 2  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  ( E. g  e.  ( ~P X  i^i  Fin ) S  =  ( F `  g )  <->  E. g  e.  ( ~P S  i^i  Fin ) S  =  ( F `  g ) ) )
4 simpll 790 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  S  e.  C )  /\  g  e.  ( ~P S  i^i  Fin ) )  ->  C  e.  (Moore `  X )
)
5 inss1 3833 . . . . . . . . 9  |-  ( ~P S  i^i  Fin )  C_ 
~P S
65sseli 3599 . . . . . . . 8  |-  ( g  e.  ( ~P S  i^i  Fin )  ->  g  e.  ~P S )
76elpwid 4170 . . . . . . 7  |-  ( g  e.  ( ~P S  i^i  Fin )  ->  g  C_  S )
87adantl 482 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  S  e.  C )  /\  g  e.  ( ~P S  i^i  Fin ) )  ->  g  C_  S )
9 simplr 792 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  S  e.  C )  /\  g  e.  ( ~P S  i^i  Fin ) )  ->  S  e.  C )
101mrcsscl 16280 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  g  C_  S  /\  S  e.  C )  ->  ( F `  g )  C_  S )
114, 8, 9, 10syl3anc 1326 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  S  e.  C )  /\  g  e.  ( ~P S  i^i  Fin ) )  ->  ( F `  g )  C_  S )
1211biantrud 528 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  S  e.  C )  /\  g  e.  ( ~P S  i^i  Fin ) )  ->  ( S  C_  ( F `  g )  <->  ( S  C_  ( F `  g
)  /\  ( F `  g )  C_  S
) ) )
13 eqss 3618 . . . 4  |-  ( S  =  ( F `  g )  <->  ( S  C_  ( F `  g
)  /\  ( F `  g )  C_  S
) )
1412, 13syl6rbbr 279 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  S  e.  C )  /\  g  e.  ( ~P S  i^i  Fin ) )  ->  ( S  =  ( F `  g )  <->  S  C_  ( F `  g )
) )
1514rexbidva 3049 . 2  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  ( E. g  e.  ( ~P S  i^i  Fin ) S  =  ( F `  g )  <->  E. g  e.  ( ~P S  i^i  Fin ) S  C_  ( F `  g )
) )
163, 15bitrd 268 1  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  ( E. g  e.  ( ~P X  i^i  Fin ) S  =  ( F `  g )  <->  E. g  e.  ( ~P S  i^i  Fin ) S  C_  ( F `  g )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ` cfv 5888   Fincfn 7955  Moorecmre 16242  mrClscmrc 16243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator