Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrrcl Structured version   Visualization version   Unicode version

Theorem msrrcl 31440
Description: If  X and  Y have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p  |-  P  =  (mPreSt `  T )
msrf.r  |-  R  =  (mStRed `  T )
Assertion
Ref Expression
msrrcl  |-  ( ( R `  X )  =  ( R `  Y )  ->  ( X  e.  P  <->  Y  e.  P ) )

Proof of Theorem msrrcl
StepHypRef Expression
1 mpstssv.p . . . . 5  |-  P  =  (mPreSt `  T )
2 msrf.r . . . . 5  |-  R  =  (mStRed `  T )
31, 2msrf 31439 . . . 4  |-  R : P
--> P
43ffvelrni 6358 . . 3  |-  ( X  e.  P  ->  ( R `  X )  e.  P )
54a1i 11 . 2  |-  ( ( R `  X )  =  ( R `  Y )  ->  ( X  e.  P  ->  ( R `  X )  e.  P ) )
63ffvelrni 6358 . . 3  |-  ( Y  e.  P  ->  ( R `  Y )  e.  P )
7 eleq1 2689 . . 3  |-  ( ( R `  X )  =  ( R `  Y )  ->  (
( R `  X
)  e.  P  <->  ( R `  Y )  e.  P
) )
86, 7syl5ibr 236 . 2  |-  ( ( R `  X )  =  ( R `  Y )  ->  ( Y  e.  P  ->  ( R `  X )  e.  P ) )
93fdmi 6052 . . . . . 6  |-  dom  R  =  P
10 0nelxp 5143 . . . . . . 7  |-  -.  (/)  e.  ( ( _V  X.  _V )  X.  _V )
111mpstssv 31436 . . . . . . . 8  |-  P  C_  ( ( _V  X.  _V )  X.  _V )
1211sseli 3599 . . . . . . 7  |-  ( (/)  e.  P  ->  (/)  e.  ( ( _V  X.  _V )  X.  _V ) )
1310, 12mto 188 . . . . . 6  |-  -.  (/)  e.  P
149, 13ndmfvrcl 6219 . . . . 5  |-  ( ( R `  X )  e.  P  ->  X  e.  P )
1514adantl 482 . . . 4  |-  ( ( ( R `  X
)  =  ( R `
 Y )  /\  ( R `  X )  e.  P )  ->  X  e.  P )
167biimpa 501 . . . . 5  |-  ( ( ( R `  X
)  =  ( R `
 Y )  /\  ( R `  X )  e.  P )  -> 
( R `  Y
)  e.  P )
179, 13ndmfvrcl 6219 . . . . 5  |-  ( ( R `  Y )  e.  P  ->  Y  e.  P )
1816, 17syl 17 . . . 4  |-  ( ( ( R `  X
)  =  ( R `
 Y )  /\  ( R `  X )  e.  P )  ->  Y  e.  P )
1915, 182thd 255 . . 3  |-  ( ( ( R `  X
)  =  ( R `
 Y )  /\  ( R `  X )  e.  P )  -> 
( X  e.  P  <->  Y  e.  P ) )
2019ex 450 . 2  |-  ( ( R `  X )  =  ( R `  Y )  ->  (
( R `  X
)  e.  P  -> 
( X  e.  P  <->  Y  e.  P ) ) )
215, 8, 20pm5.21ndd 369 1  |-  ( ( R `  X )  =  ( R `  Y )  ->  ( X  e.  P  <->  Y  e.  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    X. cxp 5112   ` cfv 5888  mPreStcmpst 31370  mStRedcmsr 31371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-mpst 31390  df-msr 31391
This theorem is referenced by:  elmthm  31473
  Copyright terms: Public domain W3C validator