Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrf Structured version   Visualization version   Unicode version

Theorem msrf 31439
Description: The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p  |-  P  =  (mPreSt `  T )
msrf.r  |-  R  =  (mStRed `  T )
Assertion
Ref Expression
msrf  |-  R : P
--> P

Proof of Theorem msrf
Dummy variables  h  a  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 otex 4933 . . . . 5  |-  <. (
( 1st `  ( 1st `  s ) )  i^i  [_ U. ( (mVars `  T ) " (
h  u.  { a } ) )  / 
z ]_ ( z  X.  z ) ) ,  h ,  a >.  e.  _V
21csbex 4793 . . . 4  |-  [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( (mVars `  T ) " ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >.  e.  _V
32csbex 4793 . . 3  |-  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( (mVars `  T ) " (
h  u.  { a } ) )  / 
z ]_ ( z  X.  z ) ) ,  h ,  a >.  e.  _V
4 eqid 2622 . . . 4  |-  (mVars `  T )  =  (mVars `  T )
5 mpstssv.p . . . 4  |-  P  =  (mPreSt `  T )
6 msrf.r . . . 4  |-  R  =  (mStRed `  T )
74, 5, 6msrfval 31434 . . 3  |-  R  =  ( s  e.  P  |-> 
[_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( (mVars `  T ) " ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
83, 7fnmpti 6022 . 2  |-  R  Fn  P
95mpst123 31437 . . . . . 6  |-  ( s  e.  P  ->  s  =  <. ( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
109fveq2d 6195 . . . . 5  |-  ( s  e.  P  ->  ( R `  s )  =  ( R `  <. ( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. ) )
11 id 22 . . . . . . 7  |-  ( s  e.  P  ->  s  e.  P )
129, 11eqeltrrd 2702 . . . . . 6  |-  ( s  e.  P  ->  <. ( 1st `  ( 1st `  s
) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  P )
13 eqid 2622 . . . . . . 7  |-  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  =  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )
144, 5, 6, 13msrval 31435 . . . . . 6  |-  ( <.
( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  P  -> 
( R `  <. ( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )  =  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
1512, 14syl 17 . . . . 5  |-  ( s  e.  P  ->  ( R `  <. ( 1st `  ( 1st `  s
) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )  =  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
1610, 15eqtrd 2656 . . . 4  |-  ( s  e.  P  ->  ( R `  s )  =  <. ( ( 1st `  ( 1st `  s
) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
17 inss1 3833 . . . . . . 7  |-  ( ( 1st `  ( 1st `  s ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) )  C_  ( 1st `  ( 1st `  s
) )
18 eqid 2622 . . . . . . . . . . 11  |-  (mDV `  T )  =  (mDV
`  T )
19 eqid 2622 . . . . . . . . . . 11  |-  (mEx `  T )  =  (mEx
`  T )
2018, 19, 5elmpst 31433 . . . . . . . . . 10  |-  ( <.
( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  P  <->  ( (
( 1st `  ( 1st `  s ) ) 
C_  (mDV `  T
)  /\  `' ( 1st `  ( 1st `  s
) )  =  ( 1st `  ( 1st `  s ) ) )  /\  ( ( 2nd `  ( 1st `  s
) )  C_  (mEx `  T )  /\  ( 2nd `  ( 1st `  s
) )  e.  Fin )  /\  ( 2nd `  s
)  e.  (mEx `  T ) ) )
2112, 20sylib 208 . . . . . . . . 9  |-  ( s  e.  P  ->  (
( ( 1st `  ( 1st `  s ) ) 
C_  (mDV `  T
)  /\  `' ( 1st `  ( 1st `  s
) )  =  ( 1st `  ( 1st `  s ) ) )  /\  ( ( 2nd `  ( 1st `  s
) )  C_  (mEx `  T )  /\  ( 2nd `  ( 1st `  s
) )  e.  Fin )  /\  ( 2nd `  s
)  e.  (mEx `  T ) ) )
2221simp1d 1073 . . . . . . . 8  |-  ( s  e.  P  ->  (
( 1st `  ( 1st `  s ) ) 
C_  (mDV `  T
)  /\  `' ( 1st `  ( 1st `  s
) )  =  ( 1st `  ( 1st `  s ) ) ) )
2322simpld 475 . . . . . . 7  |-  ( s  e.  P  ->  ( 1st `  ( 1st `  s
) )  C_  (mDV `  T ) )
2417, 23syl5ss 3614 . . . . . 6  |-  ( s  e.  P  ->  (
( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  C_  (mDV `  T ) )
25 cnvin 5540 . . . . . . 7  |-  `' ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  =  ( `' ( 1st `  ( 1st `  s
) )  i^i  `' ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) )
2622simprd 479 . . . . . . . 8  |-  ( s  e.  P  ->  `' ( 1st `  ( 1st `  s ) )  =  ( 1st `  ( 1st `  s ) ) )
27 cnvxp 5551 . . . . . . . . 9  |-  `' ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) )  =  ( U. ( (mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) )
2827a1i 11 . . . . . . . 8  |-  ( s  e.  P  ->  `' ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) )  =  ( U. ( (mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )
2926, 28ineq12d 3815 . . . . . . 7  |-  ( s  e.  P  ->  ( `' ( 1st `  ( 1st `  s ) )  i^i  `' ( U. ( (mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) )
3025, 29syl5eq 2668 . . . . . 6  |-  ( s  e.  P  ->  `' ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) )
3124, 30jca 554 . . . . 5  |-  ( s  e.  P  ->  (
( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  C_  (mDV `  T )  /\  `' ( ( 1st `  ( 1st `  s
) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ) )
3221simp2d 1074 . . . . 5  |-  ( s  e.  P  ->  (
( 2nd `  ( 1st `  s ) ) 
C_  (mEx `  T
)  /\  ( 2nd `  ( 1st `  s
) )  e.  Fin ) )
3321simp3d 1075 . . . . 5  |-  ( s  e.  P  ->  ( 2nd `  s )  e.  (mEx `  T )
)
3418, 19, 5elmpst 31433 . . . . 5  |-  ( <.
( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  P  <->  ( (
( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  C_  (mDV `  T )  /\  `' ( ( 1st `  ( 1st `  s
) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) )  /\  ( ( 2nd `  ( 1st `  s
) )  C_  (mEx `  T )  /\  ( 2nd `  ( 1st `  s
) )  e.  Fin )  /\  ( 2nd `  s
)  e.  (mEx `  T ) ) )
3531, 32, 33, 34syl3anbrc 1246 . . . 4  |-  ( s  e.  P  ->  <. (
( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  P )
3616, 35eqeltrd 2701 . . 3  |-  ( s  e.  P  ->  ( R `  s )  e.  P )
3736rgen 2922 . 2  |-  A. s  e.  P  ( R `  s )  e.  P
38 ffnfv 6388 . 2  |-  ( R : P --> P  <->  ( R  Fn  P  /\  A. s  e.  P  ( R `  s )  e.  P
) )
398, 37, 38mpbir2an 955 1  |-  R : P
--> P
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   <.cotp 4185   U.cuni 4436    X. cxp 5112   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   Fincfn 7955  mExcmex 31364  mDVcmdv 31365  mVarscmvrs 31366  mPreStcmpst 31370  mStRedcmsr 31371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-mpst 31390  df-msr 31391
This theorem is referenced by:  msrrcl  31440  msrid  31442  msrfo  31443  mstapst  31444  elmsta  31445  elmthm  31473  mthmsta  31475  mthmblem  31477
  Copyright terms: Public domain W3C validator