Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elqs Structured version   Visualization version   Unicode version

Theorem n0elqs 34098
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019.)
Assertion
Ref Expression
n0elqs  |-  ( -.  (/)  e.  ( A /. R )  <->  A  C_  dom  R )

Proof of Theorem n0elqs
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ecdmn0 7789 . . 3  |-  ( x  e.  dom  R  <->  [ x ] R  =/=  (/) )
21ralbii 2980 . 2  |-  ( A. x  e.  A  x  e.  dom  R  <->  A. x  e.  A  [ x ] R  =/=  (/) )
3 dfss3 3592 . 2  |-  ( A 
C_  dom  R  <->  A. x  e.  A  x  e.  dom  R )
4 nne 2798 . . . . 5  |-  ( -. 
[ x ] R  =/=  (/)  <->  [ x ] R  =  (/) )
54rexbii 3041 . . . 4  |-  ( E. x  e.  A  -.  [ x ] R  =/=  (/) 
<->  E. x  e.  A  [ x ] R  =  (/) )
65notbii 310 . . 3  |-  ( -. 
E. x  e.  A  -.  [ x ] R  =/=  (/)  <->  -.  E. x  e.  A  [ x ] R  =  (/) )
7 dfral2 2994 . . 3  |-  ( A. x  e.  A  [
x ] R  =/=  (/) 
<->  -.  E. x  e.  A  -.  [ x ] R  =/=  (/) )
8 0ex 4790 . . . . . 6  |-  (/)  e.  _V
98elqs 7799 . . . . 5  |-  ( (/)  e.  ( A /. R
)  <->  E. x  e.  A  (/)  =  [ x ] R )
10 eqcom 2629 . . . . . 6  |-  ( (/)  =  [ x ] R  <->  [ x ] R  =  (/) )
1110rexbii 3041 . . . . 5  |-  ( E. x  e.  A  (/)  =  [ x ] R  <->  E. x  e.  A  [
x ] R  =  (/) )
129, 11bitri 264 . . . 4  |-  ( (/)  e.  ( A /. R
)  <->  E. x  e.  A  [ x ] R  =  (/) )
1312notbii 310 . . 3  |-  ( -.  (/)  e.  ( A /. R )  <->  -.  E. x  e.  A  [ x ] R  =  (/) )
146, 7, 133bitr4ri 293 . 2  |-  ( -.  (/)  e.  ( A /. R )  <->  A. x  e.  A  [ x ] R  =/=  (/) )
152, 3, 143bitr4ri 293 1  |-  ( -.  (/)  e.  ( A /. R )  <->  A  C_  dom  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   dom cdm 5114   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744  df-qs 7748
This theorem is referenced by:  n0elqs2  34099
  Copyright terms: Public domain W3C validator