Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgf1o Structured version   Visualization version   Unicode version

Theorem neicvgf1o 38412
Description: If neighborhood and convergent functions are related by operator  H, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
neicvg.p  |-  P  =  ( n  e.  _V  |->  ( p  e.  ( ~P n  ^m  ~P n
)  |->  ( o  e. 
~P n  |->  ( n 
\  ( p `  ( n  \  o
) ) ) ) ) )
neicvg.d  |-  D  =  ( P `  B
)
neicvg.f  |-  F  =  ( ~P B O B )
neicvg.g  |-  G  =  ( B O ~P B )
neicvg.h  |-  H  =  ( F  o.  ( D  o.  G )
)
neicvg.r  |-  ( ph  ->  N H M )
Assertion
Ref Expression
neicvgf1o  |-  ( ph  ->  H : ( ~P ~P B  ^m  B
)
-1-1-onto-> ( ~P ~P B  ^m  B ) )
Distinct variable groups:    B, i,
j, k, l, m    B, n, o, p    ph, i,
j, k, l    ph, n, o, p
Allowed substitution hints:    ph( m)    D( i, j, k, m, n, o, p, l)    P( i, j, k, m, n, o, p, l)    F( i, j, k, m, n, o, p, l)    G( i, j, k, m, n, o, p, l)    H( i, j, k, m, n, o, p, l)    M( i, j, k, m, n, o, p, l)    N( i, j, k, m, n, o, p, l)    O( i, j, k, m, n, o, p, l)

Proof of Theorem neicvgf1o
StepHypRef Expression
1 neicvg.o . . . 4  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
2 neicvg.d . . . . . 6  |-  D  =  ( P `  B
)
3 neicvg.h . . . . . 6  |-  H  =  ( F  o.  ( D  o.  G )
)
4 neicvg.r . . . . . 6  |-  ( ph  ->  N H M )
52, 3, 4neicvgbex 38410 . . . . 5  |-  ( ph  ->  B  e.  _V )
6 pwexg 4850 . . . . 5  |-  ( B  e.  _V  ->  ~P B  e.  _V )
75, 6syl 17 . . . 4  |-  ( ph  ->  ~P B  e.  _V )
8 neicvg.f . . . 4  |-  F  =  ( ~P B O B )
91, 7, 5, 8fsovf1od 38310 . . 3  |-  ( ph  ->  F : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P ~P B  ^m  B ) )
10 neicvg.p . . . . 5  |-  P  =  ( n  e.  _V  |->  ( p  e.  ( ~P n  ^m  ~P n
)  |->  ( o  e. 
~P n  |->  ( n 
\  ( p `  ( n  \  o
) ) ) ) ) )
1110, 2, 5dssmapf1od 38315 . . . 4  |-  ( ph  ->  D : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P B  ^m  ~P B ) )
12 neicvg.g . . . . 5  |-  G  =  ( B O ~P B )
131, 5, 7, 12fsovf1od 38310 . . . 4  |-  ( ph  ->  G : ( ~P ~P B  ^m  B
)
-1-1-onto-> ( ~P B  ^m  ~P B ) )
14 f1oco 6159 . . . 4  |-  ( ( D : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P B  ^m  ~P B )  /\  G : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P B  ^m  ~P B
) )  ->  ( D  o.  G ) : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P B  ^m  ~P B
) )
1511, 13, 14syl2anc 693 . . 3  |-  ( ph  ->  ( D  o.  G
) : ( ~P ~P B  ^m  B
)
-1-1-onto-> ( ~P B  ^m  ~P B ) )
16 f1oco 6159 . . 3  |-  ( ( F : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P ~P B  ^m  B )  /\  ( D  o.  G ) : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P B  ^m  ~P B
) )  ->  ( F  o.  ( D  o.  G ) ) : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P ~P B  ^m  B ) )
179, 15, 16syl2anc 693 . 2  |-  ( ph  ->  ( F  o.  ( D  o.  G )
) : ( ~P ~P B  ^m  B
)
-1-1-onto-> ( ~P ~P B  ^m  B ) )
18 f1oeq1 6127 . . 3  |-  ( H  =  ( F  o.  ( D  o.  G
) )  ->  ( H : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  <->  ( F  o.  ( D  o.  G
) ) : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P ~P B  ^m  B ) ) )
193, 18ax-mp 5 . 2  |-  ( H : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  <->  ( F  o.  ( D  o.  G
) ) : ( ~P ~P B  ^m  B ) -1-1-onto-> ( ~P ~P B  ^m  B ) )
2017, 19sylibr 224 1  |-  ( ph  ->  H : ( ~P ~P B  ^m  B
)
-1-1-onto-> ( ~P ~P B  ^m  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729    o. ccom 5118   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator