MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfint Structured version   Visualization version   Unicode version

Theorem nfint 4486
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1  |-  F/_ x A
Assertion
Ref Expression
nfint  |-  F/_ x |^| A

Proof of Theorem nfint
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4477 . 2  |-  |^| A  =  { y  |  A. z  e.  A  y  e.  z }
2 nfint.1 . . . 4  |-  F/_ x A
3 nfv 1843 . . . 4  |-  F/ x  y  e.  z
42, 3nfral 2945 . . 3  |-  F/ x A. z  e.  A  y  e.  z
54nfab 2769 . 2  |-  F/_ x { y  |  A. z  e.  A  y  e.  z }
61, 5nfcxfr 2762 1  |-  F/_ x |^| A
Colors of variables: wff setvar class
Syntax hints:   {cab 2608   F/_wnfc 2751   A.wral 2912   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-int 4476
This theorem is referenced by:  onminsb  6999  oawordeulem  7634  nnawordex  7717  rankidb  8663  cardmin2  8824  cardaleph  8912  cardmin  9386  ldsysgenld  30223  sltval2  31809  aomclem8  37631
  Copyright terms: Public domain W3C validator