MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin2 Structured version   Visualization version   Unicode version

Theorem cardmin2 8824
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardmin2  |-  ( E. x  e.  On  A  ~<  x  <->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Distinct variable group:    x, A

Proof of Theorem cardmin2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 onintrab2 7002 . . . 4  |-  ( E. x  e.  On  A  ~<  x  <->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
21biimpi 206 . . 3  |-  ( E. x  e.  On  A  ~<  x  ->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
32adantr 481 . . . . . 6  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
4 eloni 5733 . . . . . . . 8  |-  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  ->  Ord  |^| { x  e.  On  |  A  ~<  x } )
5 ordelss 5739 . . . . . . . 8  |-  ( ( Ord  |^| { x  e.  On  |  A  ~<  x }  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  C_  |^|
{ x  e.  On  |  A  ~<  x }
)
64, 5sylan 488 . . . . . . 7  |-  ( (
|^| { x  e.  On  |  A  ~<  x }  e.  On  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  C_  |^|
{ x  e.  On  |  A  ~<  x }
)
71, 6sylanb 489 . . . . . 6  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  C_ 
|^| { x  e.  On  |  A  ~<  x }
)
8 ssdomg 8001 . . . . . 6  |-  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  ->  ( y  C_  |^|
{ x  e.  On  |  A  ~<  x }  ->  y  ~<_  |^| { x  e.  On  |  A  ~<  x } ) )
93, 7, 8sylc 65 . . . . 5  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  ~<_  |^|
{ x  e.  On  |  A  ~<  x }
)
10 onelon 5748 . . . . . . . 8  |-  ( (
|^| { x  e.  On  |  A  ~<  x }  e.  On  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  e.  On )
111, 10sylanb 489 . . . . . . 7  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  e.  On )
12 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x A
13 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x  ~<
14 nfrab1 3122 . . . . . . . . . . . . . . 15  |-  F/_ x { x  e.  On  |  A  ~<  x }
1514nfint 4486 . . . . . . . . . . . . . 14  |-  F/_ x |^| { x  e.  On  |  A  ~<  x }
1612, 13, 15nfbr 4699 . . . . . . . . . . . . 13  |-  F/ x  A  ~<  |^| { x  e.  On  |  A  ~<  x }
17 breq2 4657 . . . . . . . . . . . . 13  |-  ( x  =  |^| { x  e.  On  |  A  ~<  x }  ->  ( A  ~<  x  <->  A  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
1816, 17onminsb 6999 . . . . . . . . . . . 12  |-  ( E. x  e.  On  A  ~<  x  ->  A  ~<  |^|
{ x  e.  On  |  A  ~<  x }
)
19 sdomentr 8094 . . . . . . . . . . . 12  |-  ( ( A  ~<  |^| { x  e.  On  |  A  ~<  x }  /\  |^| { x  e.  On  |  A  ~<  x }  ~~  y )  ->  A  ~<  y
)
2018, 19sylan 488 . . . . . . . . . . 11  |-  ( ( E. x  e.  On  A  ~<  x  /\  |^| { x  e.  On  |  A  ~<  x }  ~~  y )  ->  A  ~<  y )
21 breq2 4657 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( A  ~<  x  <->  A  ~<  y ) )
2221elrab 3363 . . . . . . . . . . . . 13  |-  ( y  e.  { x  e.  On  |  A  ~<  x }  <->  ( y  e.  On  /\  A  ~<  y ) )
23 ssrab2 3687 . . . . . . . . . . . . . 14  |-  { x  e.  On  |  A  ~<  x }  C_  On
24 onnmin 7003 . . . . . . . . . . . . . 14  |-  ( ( { x  e.  On  |  A  ~<  x }  C_  On  /\  y  e. 
{ x  e.  On  |  A  ~<  x }
)  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } )
2523, 24mpan 706 . . . . . . . . . . . . 13  |-  ( y  e.  { x  e.  On  |  A  ~<  x }  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } )
2622, 25sylbir 225 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  A  ~<  y )  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } )
2726expcom 451 . . . . . . . . . . 11  |-  ( A 
~<  y  ->  ( y  e.  On  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } ) )
2820, 27syl 17 . . . . . . . . . 10  |-  ( ( E. x  e.  On  A  ~<  x  /\  |^| { x  e.  On  |  A  ~<  x }  ~~  y )  ->  (
y  e.  On  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } ) )
2928impancom 456 . . . . . . . . 9  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  On )  ->  ( |^| { x  e.  On  |  A  ~<  x }  ~~  y  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } ) )
3029con2d 129 . . . . . . . 8  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  On )  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  -.  |^| { x  e.  On  |  A  ~<  x }  ~~  y ) )
3130impancom 456 . . . . . . 7  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  (
y  e.  On  ->  -. 
|^| { x  e.  On  |  A  ~<  x }  ~~  y ) )
3211, 31mpd 15 . . . . . 6  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  -.  |^|
{ x  e.  On  |  A  ~<  x }  ~~  y )
33 ensym 8005 . . . . . 6  |-  ( y 
~~  |^| { x  e.  On  |  A  ~<  x }  ->  |^| { x  e.  On  |  A  ~<  x }  ~~  y )
3432, 33nsyl 135 . . . . 5  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  -.  y  ~~  |^| { x  e.  On  |  A  ~<  x } )
35 brsdom 7978 . . . . 5  |-  ( y 
~<  |^| { x  e.  On  |  A  ~<  x }  <->  ( y  ~<_  |^|
{ x  e.  On  |  A  ~<  x }  /\  -.  y  ~~  |^| { x  e.  On  |  A  ~<  x } ) )
369, 34, 35sylanbrc 698 . . . 4  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  ~<  |^| { x  e.  On  |  A  ~<  x } )
3736ralrimiva 2966 . . 3  |-  ( E. x  e.  On  A  ~<  x  ->  A. y  e.  |^| { x  e.  On  |  A  ~<  x } y  ~<  |^| { x  e.  On  |  A  ~<  x } )
38 iscard 8801 . . 3  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  <->  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  /\  A. y  e. 
|^| { x  e.  On  |  A  ~<  x }
y  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
392, 37, 38sylanbrc 698 . 2  |-  ( E. x  e.  On  A  ~<  x  ->  ( card ` 
|^| { x  e.  On  |  A  ~<  x }
)  =  |^| { x  e.  On  |  A  ~<  x } )
40 vprc 4796 . . . . . 6  |-  -.  _V  e.  _V
41 inteq 4478 . . . . . . . 8  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  |^| { x  e.  On  |  A  ~<  x }  =  |^| (/) )
42 int0 4490 . . . . . . . 8  |-  |^| (/)  =  _V
4341, 42syl6eq 2672 . . . . . . 7  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  |^| { x  e.  On  |  A  ~<  x }  =  _V )
4443eleq1d 2686 . . . . . 6  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  ( |^| { x  e.  On  |  A  ~<  x }  e.  _V  <->  _V  e.  _V ) )
4540, 44mtbiri 317 . . . . 5  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  -.  |^| { x  e.  On  |  A  ~<  x }  e.  _V )
46 fvex 6201 . . . . . 6  |-  ( card `  |^| { x  e.  On  |  A  ~<  x } )  e.  _V
47 eleq1 2689 . . . . . 6  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  ( ( card `  |^| { x  e.  On  |  A  ~<  x } )  e.  _V  <->  |^| { x  e.  On  |  A  ~<  x }  e.  _V )
)
4846, 47mpbii 223 . . . . 5  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  |^|
{ x  e.  On  |  A  ~<  x }  e.  _V )
4945, 48nsyl 135 . . . 4  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  -.  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
5049necon2ai 2823 . . 3  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  { x  e.  On  |  A  ~<  x }  =/=  (/) )
51 rabn0 3958 . . 3  |-  ( { x  e.  On  |  A  ~<  x }  =/=  (/)  <->  E. x  e.  On  A  ~<  x )
5250, 51sylib 208 . 2  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  E. x  e.  On  A  ~<  x )
5339, 52impbii 199 1  |-  ( E. x  e.  On  A  ~<  x  <->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   |^|cint 4475   class class class wbr 4653   Ord word 5722   Oncon0 5723   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator